summaryrefslogtreecommitdiff
path: root/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions
diff options
context:
space:
mode:
Diffstat (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions')
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_init_q31.c98
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_q31.c549
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c412
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c273
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c292
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_f32.c97
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q15.c99
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q31.c98
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c398
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c392
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f32.c590
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c590
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f32.c89
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f64.c89
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_f32.c670
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_init_f32.c89
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c635
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c531
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c1398
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q31.c565
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q15.c533
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q7.c423
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_f32.c678
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_opt_q15.c756
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c1494
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q31.c620
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q15.c753
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q7.c791
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q15.c795
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c616
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c750
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c722
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q31.c553
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q7.c678
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_f32.c727
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_opt_q15.c500
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c1307
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c600
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q15.c501
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q7.c452
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c707
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c653
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q7.c778
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_f32.c512
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c586
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q31.c339
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_f32.c105
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q15.c107
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q31.c105
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q15.c684
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q31.c299
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c985
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q15.c333
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q31.c293
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_f32.c84
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q15.c142
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q31.c84
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q7.c82
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c569
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_f32.c109
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q15.c108
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q31.c109
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q15.c496
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c492
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_f32.c494
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_f32.c71
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q15.c71
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q31.c71
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q15.c524
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q31.c341
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q15.c679
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q31.c353
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q7.c385
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c433
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_f32.c95
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q15.c95
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q31.c94
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q7.c95
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q15.c470
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q31.c450
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q7.c469
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c435
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_f32.c79
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q15.c79
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q31.c79
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q15.c452
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q31.c338
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_f32.c430
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_f32.c83
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q15.c93
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q31.c93
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_f32.c454
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_f32.c93
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q15.c100
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q31.c99
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q15.c428
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q31.c419
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q15.c368
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q31.c357
99 files changed, 40633 insertions, 0 deletions
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_init_q31.c
new file mode 100644
index 0000000..8a29213
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_init_q31.c
@@ -0,0 +1,98 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_32x64_init_q31.c
+ * Description: High precision Q31 Biquad cascade filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1_32x64
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format.
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ *
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> points to state variables array and size of each state variable is 1.63 format.
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
+ * The state variables are arranged in the state array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign postShift to be applied to the output */
+ S->postShift = postShift;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 4 * numStages */
+ memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q63_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF1_32x64 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_q31.c
new file mode 100644
index 0000000..d241f76
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_q31.c
@@ -0,0 +1,549 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_32x64_q31.c
+ * Description: High precision Q31 Biquad cascade filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter
+ *
+ * This function implements a high precision Biquad cascade filter which operates on
+ * Q31 data values. The filter coefficients are in 1.31 format and the state variables
+ * are in 1.63 format. The double precision state variables reduce quantization noise
+ * in the filter and provide a cleaner output.
+ * These filters are particularly useful when implementing filters in which the
+ * singularities are close to the unit circle. This is common for low pass or high
+ * pass filters with very low cutoff frequencies.
+ *
+ * The function operates on blocks of input and output data
+ * and each call to the function processes <code>blockSize</code> samples through
+ * the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays
+ * containing <code>blockSize</code> Q31 values.
+ *
+ * \par Algorithm
+ * Each Biquad stage implements a second order filter using the difference equation:
+ * <pre>
+ * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * </pre>
+ * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
+ * \image html Biquad.gif "Single Biquad filter stage"
+ * Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
+ * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
+ * Pay careful attention to the sign of the feedback coefficients.
+ * Some design tools use the difference equation
+ * <pre>
+ * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
+ * </pre>
+ * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
+ *
+ * \par
+ * Higher order filters are realized as a cascade of second order sections.
+ * <code>numStages</code> refers to the number of second order stages used.
+ * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
+ * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
+ * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
+ *
+ * \par
+ * The <code>pState</code> points to state variables array .
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision.
+ * The state variables are arranged in the array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ *
+ * \par
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values of data in 1.63 format.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ *
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ *
+ * \par Init Function
+ * There is also an associated initialization function which performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numStages, pCoeffs, postShift, pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros before static initialization.
+ * For example, to statically initialize the filter instance structure use
+ * <pre>
+ * arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift};
+ * </pre>
+ * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
+ * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below.
+ * \par Fixed-Point Behavior
+ * Care must be taken while using Biquad Cascade 32x64 filter function.
+ * Following issues must be considered:
+ * - Scaling of coefficients
+ * - Filter gain
+ * - Overflow and saturation
+ *
+ * \par
+ * Filter coefficients are represented as fractional values and
+ * restricted to lie in the range <code>[-1 +1)</code>.
+ * The processing function has an additional scaling parameter <code>postShift</code>
+ * which allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
+ * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
+ * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
+ * This essentially scales the filter coefficients by <code>2^postShift</code>.
+ * For example, to realize the coefficients
+ * <pre>
+ * {1.5, -0.8, 1.2, 1.6, -0.9}
+ * </pre>
+ * set the Coefficient array to:
+ * <pre>
+ * {0.75, -0.4, 0.6, 0.8, -0.45}
+ * </pre>
+ * and set <code>postShift=1</code>
+ *
+ * \par
+ * The second thing to keep in mind is the gain through the filter.
+ * The frequency response of a Biquad filter is a function of its coefficients.
+ * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
+ * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
+ * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
+ *
+ * \par
+ * The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version.
+ * This is described in the function specific documentation below.
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1_32x64
+ * @{
+ */
+
+/**
+ * @details
+
+ * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
+ * After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
+ * 1.31 format by discarding the low 32 bits.
+ *
+ * \par
+ * Two related functions are provided in the CMSIS DSP library.
+ * <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator.
+ * <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator.
+ */
+
+void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q63_t *pState = S->pState; /* state pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q63_t acc; /* accumulator */
+ q31_t Xn1, Xn2; /* Input Filter state variables */
+ q63_t Yn1, Yn2; /* Output Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn; /* temporary input */
+ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+ q31_t acc_l, acc_h; /* temporary output */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = (q31_t) (pState[0]);
+ Xn2 = (q31_t) (pState[1]);
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ /* The variable acc hold output value that is being computed and
+ * stored in the destination buffer
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) Xn *b0;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) Xn1 *b1;
+
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn2 *b2;
+
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn1, a1);
+
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn2, a2);
+
+ /* The result is converted to 1.63 , Yn2 variable is reused */
+ Yn2 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *pOut = acc_h;
+
+ /* Read the second input into Xn2, to reuse the value */
+ Xn2 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc += b1 * x[n-1] */
+ acc = (q63_t) Xn *b1;
+
+ /* acc = b0 * x[n] */
+ acc += (q63_t) Xn2 *b0;
+
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn1 *b2;
+
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn2, a1);
+
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn1, a2);
+
+ /* The result is converted to 1.63, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Read the third input into Xn1, to reuse the value */
+ Xn1 = *pIn++;
+
+ /* The result is converted to 1.31 */
+ /* Store the output in the destination buffer. */
+ *(pOut + 1U) = acc_h;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) Xn1 *b0;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) Xn2 *b1;
+
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn *b2;
+
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn1, a1);
+
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn2, a2);
+
+ /* The result is converted to 1.63, Yn2 variable is reused */
+ Yn2 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *(pOut + 2U) = acc_h;
+
+ /* Read the fourth input into Xn, to reuse the value */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q63_t) Xn *b0;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) Xn1 *b1;
+
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn2 *b2;
+
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn2, a1);
+
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn1, a2);
+
+ /* The result is converted to 1.63, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *(pOut + 3U) = acc_h;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+
+ /* update output pointer */
+ pOut += 4U;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ sample = (blockSize & 0x3U);
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) Xn *b0;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) Xn1 *b1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn2 *b2;
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn1, a1);
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn2, a2);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ /* The result is converted to 1.63, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *pOut++ = acc_h;
+ /* Yn1 = acc << shift; */
+
+ /* Store the output in the destination buffer in 1.31 format. */
+/* *pOut++ = (q31_t) (acc >> (32 - shift)); */
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage output is given as input to the second stage. */
+ pIn = pDst;
+
+ /* Reset to destination buffer working pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ /* Store the updated state variables back into the pState array */
+ *pState++ = (q63_t) Xn1;
+ *pState++ = (q63_t) Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variable acc hold output value that is being computed and
+ * stored in the destination buffer
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q63_t) Xn *b0;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) Xn1 *b1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) Xn2 *b2;
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn1, a1);
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn2, a2);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+
+ /* The result is converted to 1.63, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *pOut++ = acc_h;
+
+ /* Yn1 = acc << shift; */
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ /* *pOut++ = (q31_t) (acc >> (32 - shift)); */
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage output is given as input to the second stage. */
+ pIn = pDst;
+
+ /* Reset to destination buffer working pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = (q63_t) Xn1;
+ *pState++ = (q63_t) Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+}
+
+ /**
+ * @} end of BiquadCascadeDF1_32x64 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c
new file mode 100644
index 0000000..658e395
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c
@@ -0,0 +1,412 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_f32.c
+ * Description: Processing function for the floating-point Biquad cascade DirectFormI(DF1) filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure
+ *
+ * This set of functions implements arbitrary order recursive (IIR) filters.
+ * The filters are implemented as a cascade of second order Biquad sections.
+ * The functions support Q15, Q31 and floating-point data types.
+ * Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3.
+ *
+ * The functions operate on blocks of input and output data and each call to the function
+ * processes <code>blockSize</code> samples through the filter.
+ * <code>pSrc</code> points to the array of input data and
+ * <code>pDst</code> points to the array of output data.
+ * Both arrays contain <code>blockSize</code> values.
+ *
+ * \par Algorithm
+ * Each Biquad stage implements a second order filter using the difference equation:
+ * <pre>
+ * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * </pre>
+ * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
+ * \image html Biquad.gif "Single Biquad filter stage"
+ * Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
+ * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
+ * Pay careful attention to the sign of the feedback coefficients.
+ * Some design tools use the difference equation
+ * <pre>
+ * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
+ * </pre>
+ * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
+ *
+ * \par
+ * Higher order filters are realized as a cascade of second order sections.
+ * <code>numStages</code> refers to the number of second order stages used.
+ * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
+ * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
+ * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
+ *
+ * \par
+ * The <code>pState</code> points to state variables array.
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
+ * The state variables are arranged in the <code>pState</code> array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ *
+ * \par
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values.
+ * The state variables are updated after each block of data is processed, the coefficients are untouched.
+ *
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Init Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numStages, pCoeffs, pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros before static initialization.
+ * The code below statically initializes each of the 3 different data type filter instance structures
+ * <pre>
+ * arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs};
+ * arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift};
+ * arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift};
+ * </pre>
+ * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
+ * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions.
+ * Following issues must be considered:
+ * - Scaling of coefficients
+ * - Filter gain
+ * - Overflow and saturation
+ *
+ * \par
+ * <b>Scaling of coefficients: </b>
+ * Filter coefficients are represented as fractional values and
+ * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
+ * The fixed-point functions have an additional scaling parameter <code>postShift</code>
+ * which allow the filter coefficients to exceed the range <code>[+1 -1)</code>.
+ * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
+ * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
+ * This essentially scales the filter coefficients by <code>2^postShift</code>.
+ * For example, to realize the coefficients
+ * <pre>
+ * {1.5, -0.8, 1.2, 1.6, -0.9}
+ * </pre>
+ * set the pCoeffs array to:
+ * <pre>
+ * {0.75, -0.4, 0.6, 0.8, -0.45}
+ * </pre>
+ * and set <code>postShift=1</code>
+ *
+ * \par
+ * <b>Filter gain: </b>
+ * The frequency response of a Biquad filter is a function of its coefficients.
+ * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
+ * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
+ * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
+ *
+ * \par
+ * <b>Overflow and saturation: </b>
+ * For Q15 and Q31 versions, it is described separately as part of the function specific documentation below.
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ */
+
+void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* pState pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc; /* Simulates the accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
+ float32_t Xn; /* temporary input */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the pState values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ /* The variable acc hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U)
+ {
+ /* Read the first input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+
+ /* Read the second input */
+ Xn2 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+
+ /* Read the third input */
+ Xn1 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+
+ /* Read the forth input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+
+ /* decrement the loop counter */
+ sample--;
+
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ sample = blockSize & 0x3U;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = acc;
+
+ /* decrement the loop counter */
+ sample--;
+
+ }
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent numStages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset the output pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the pState values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent numStages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset the output pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+ /**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c
new file mode 100644
index 0000000..2a08968
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c
@@ -0,0 +1,273 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_fast_q15.c
+ * Description: Fast processing function for the Q15 Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @details
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around and distorts the result.
+ * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
+ * The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
+ *
+ * \par
+ * Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
+ *
+ */
+
+void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q31_t in; /* Temporary variable to hold input value */
+ q31_t out; /* Temporary variable to hold output value */
+ q31_t b0; /* Temporary variable to hold bo value */
+ q31_t b1, a1; /* Filter coefficients */
+ q31_t state_in, state_out; /* Filter state variables */
+ q31_t acc; /* Accumulator */
+ int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = S->numStages; /* Stage loop counter */
+
+
+
+ do
+ {
+
+ /* Read the b0 and 0 coefficients using SIMD */
+ b0 = *__SIMD32(pCoeffs)++;
+
+ /* Read the b1 and b2 coefficients using SIMD */
+ b1 = *__SIMD32(pCoeffs)++;
+
+ /* Read the a1 and a2 coefficients using SIMD */
+ a1 = *__SIMD32(pCoeffs)++;
+
+ /* Read the input state values from the state buffer: x[n-1], x[n-2] */
+ state_in = *__SIMD32(pState)++;
+
+ /* Read the output state values from the state buffer: y[n-1], y[n-2] */
+ state_out = *__SIMD32(pState)--;
+
+ /* Apply loop unrolling and compute 2 output values simultaneously. */
+ /* The variable acc hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+ sample = blockSize >> 1U;
+
+ /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
+ ** a second loop below computes the remaining 1 sample. */
+ while (sample > 0U)
+ {
+
+ /* Read the input */
+ in = *__SIMD32(pIn)++;
+
+ /* out = b0 * x[n] + 0 * 0 */
+ out = __SMUAD(b0, in);
+ /* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */
+ acc = __SMLAD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
+ acc = __SMLAD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 and then saturation is applied */
+ out = __SSAT((acc >> shift), 16);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
+ state_out = __PKHBT(state_out >> 16, (out), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* out = b0 * x[n] + 0 * 0 */
+ out = __SMUADX(b0, in);
+ /* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */
+ acc = __SMLAD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
+ acc = __SMLAD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 and then saturation is applied */
+ out = __SSAT((acc >> shift), 16);
+
+
+ /* Store the output in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
+
+#else
+
+ *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in >> 16, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, in, 16);
+ state_out = __PKHBT(state_out >> 16, out, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ /* Decrement the loop counter */
+ sample--;
+
+ }
+
+ /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+
+ if ((blockSize & 0x1U) != 0U)
+ {
+ /* Read the input */
+ in = *pIn++;
+
+ /* out = b0 * x[n] + 0 * 0 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ out = __SMUAD(b0, in);
+
+#else
+
+ out = __SMUADX(b0, in);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */
+ acc = __SMLAD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
+ acc = __SMLAD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 and then saturation is applied */
+ out = __SSAT((acc >> shift), 16);
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q15_t) out;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, in, 16);
+ state_out = __PKHBT(state_out >> 16, out, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent (numStages - 1) occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset the output pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the state array */
+ *__SIMD32(pState)++ = state_in;
+ *__SIMD32(pState)++ = state_out;
+
+
+ /* Decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+}
+
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
new file mode 100644
index 0000000..5e41faa
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
@@ -0,0 +1,292 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_fast_q31.c
+ * Description: Processing function for the Q31 Fast Biquad cascade DirectFormI(DF1) filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ * These intermediate results are added to a 2.30 accumulator.
+ * Finally, the accumulator is saturated and converted to a 1.31 result.
+ * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
+ * arm_biquad_cascade_df1_init_q31() to initialize filter structure.
+ *
+ * \par
+ * Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
+ */
+
+void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t acc = 0; /* accumulator */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q31_t *pState = S->pState; /* pState pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q31_t Xn; /* temporary input */
+ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ /* The variables acc ... acc3 hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
+ mult_32x32_keep32_R(acc, b1, Xn1);
+ /* acc += b1 * x[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b0, Xn);
+ /* acc += b[2] * x[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b2, Xn2);
+ /* acc += a1 * y[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a1, Yn1);
+ /* acc += a2 * y[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a2, Yn2);
+
+ /* The result is converted to 1.31 , Yn2 variable is reused */
+ Yn2 = acc << shift;
+
+ /* Read the second input */
+ Xn2 = *(pIn + 1U);
+
+ /* Store the output in the destination buffer. */
+ *pOut = Yn2;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
+ mult_32x32_keep32_R(acc, b0, Xn2);
+ /* acc += b1 * x[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b1, Xn);
+ /* acc += b[2] * x[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b2, Xn1);
+ /* acc += a1 * y[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a1, Yn2);
+ /* acc += a2 * y[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a2, Yn1);
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Read the third input */
+ Xn1 = *(pIn + 2U);
+
+ /* Store the output in the destination buffer. */
+ *(pOut + 1U) = Yn1;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
+ mult_32x32_keep32_R(acc, b0, Xn1);
+ /* acc += b1 * x[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b1, Xn2);
+ /* acc += b[2] * x[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b2, Xn);
+ /* acc += a1 * y[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a1, Yn1);
+ /* acc += a2 * y[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a2, Yn2);
+
+ /* The result is converted to 1.31, Yn2 variable is reused */
+ Yn2 = acc << shift;
+
+ /* Read the forth input */
+ Xn = *(pIn + 3U);
+
+ /* Store the output in the destination buffer. */
+ *(pOut + 2U) = Yn2;
+ pIn += 4U;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
+ mult_32x32_keep32_R(acc, b0, Xn);
+ /* acc += b1 * x[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b1, Xn1);
+ /* acc += b[2] * x[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b2, Xn2);
+ /* acc += a1 * y[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a1, Yn2);
+ /* acc += a2 * y[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a2, Yn1);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ Xn2 = Xn1;
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Xn1 = Xn */
+ Xn1 = Xn;
+
+ /* Store the output in the destination buffer. */
+ *(pOut + 3U) = Yn1;
+ pOut += 4U;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ sample = (blockSize & 0x3U);
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
+ mult_32x32_keep32_R(acc, b0, Xn);
+ /* acc += b1 * x[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b1, Xn1);
+ /* acc += b[2] * x[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, b2, Xn2);
+ /* acc += a1 * y[n-1] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a1, Yn1);
+ /* acc += a2 * y[n-2] */
+ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
+ multAcc_32x32_keep32_R(acc, a2, Yn2);
+
+ /* The result is converted to 1.31 */
+ acc = acc << shift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_f32.c
new file mode 100644
index 0000000..147c8c5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_f32.c
@@ -0,0 +1,97 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_init_f32.c
+ * Description: Floating-point Biquad cascade DirectFormI(DF1) filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @details
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients array.
+ * @param[in] *pState points to the state array.
+ * @return none
+ *
+ *
+ * <b>Coefficient and State Ordering:</b>
+ *
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ *
+ * \par
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> is a pointer to state array.
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
+ * The state variables are arranged in the <code>pState</code> array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ *
+ */
+
+void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 4 * numStages */
+ memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q15.c
new file mode 100644
index 0000000..dd46fb4
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q15.c
@@ -0,0 +1,99 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_init_q15.c
+ * Description: Q15 Biquad cascade DirectFormI(DF1) filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the accumulator result. Varies according to the coefficients format
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ *
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, 0, b11, b12, a11, a12, b20, 0, b21, b22, a21, a22, ...}
+ * </pre>
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>6*numStages</code> values.
+ * The zero coefficient between <code>b1</code> and <code>b2</code> facilities use of 16-bit SIMD instructions on the Cortex-M4.
+ *
+ * \par
+ * The state variables are stored in the array <code>pState</code>.
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
+ * The state variables are arranged in the <code>pState</code> array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign postShift to be applied to the output */
+ S->postShift = postShift;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 4 * numStages */
+ memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q31.c
new file mode 100644
index 0000000..10fb6bc
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q31.c
@@ -0,0 +1,98 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_init_q31.c
+ * Description: Q31 Biquad cascade DirectFormI(DF1) filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ *
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> points to state variables array.
+ * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
+ * The state variables are arranged in the <code>pState</code> array as:
+ * <pre>
+ * {x[n-1], x[n-2], y[n-1], y[n-2]}
+ * </pre>
+ * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
+ * The state array has a total length of <code>4*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign postShift to be applied to the output */
+ S->postShift = postShift;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 4 * numStages */
+ memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
new file mode 100644
index 0000000..c524756
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
@@ -0,0 +1,398 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_q15.c
+ * Description: Processing function for the Q15 Biquad cascade DirectFormI(DF1) filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
+ * Finally, the result is saturated to 1.15 format.
+ *
+ * \par
+ * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q31_t in; /* Temporary variable to hold input value */
+ q31_t out; /* Temporary variable to hold output value */
+ q31_t b0; /* Temporary variable to hold bo value */
+ q31_t b1, a1; /* Filter coefficients */
+ q31_t state_in, state_out; /* Filter state variables */
+ q31_t acc_l, acc_h;
+ q63_t acc; /* Accumulator */
+ int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+ int32_t uShift = (32 - lShift);
+
+ do
+ {
+ /* Read the b0 and 0 coefficients using SIMD */
+ b0 = *__SIMD32(pCoeffs)++;
+
+ /* Read the b1 and b2 coefficients using SIMD */
+ b1 = *__SIMD32(pCoeffs)++;
+
+ /* Read the a1 and a2 coefficients using SIMD */
+ a1 = *__SIMD32(pCoeffs)++;
+
+ /* Read the input state values from the state buffer: x[n-1], x[n-2] */
+ state_in = *__SIMD32(pState)++;
+
+ /* Read the output state values from the state buffer: y[n-1], y[n-2] */
+ state_out = *__SIMD32(pState)--;
+
+ /* Apply loop unrolling and compute 2 output values simultaneously. */
+ /* The variable acc hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+ sample = blockSize >> 1U;
+
+ /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
+ ** a second loop below computes the remaining 1 sample. */
+ while (sample > 0U)
+ {
+
+ /* Read the input */
+ in = *__SIMD32(pIn)++;
+
+ /* out = b0 * x[n] + 0 * 0 */
+ out = __SMUAD(b0, in);
+
+ /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
+ acc = __SMLALD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + a2 * y[n-2] */
+ acc = __SMLALD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ out = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ out = __SSAT(out, 16);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
+ state_out = __PKHBT(state_out >> 16, (out), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* out = b0 * x[n] + 0 * 0 */
+ out = __SMUADX(b0, in);
+ /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
+ acc = __SMLALD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + a2 * y[n-2] */
+ acc = __SMLALD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ out = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ out = __SSAT(out, 16);
+
+ /* Store the output in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
+
+#else
+
+ *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in >> 16, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, in, 16);
+ state_out = __PKHBT(state_out >> 16, out, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ /* Decrement the loop counter */
+ sample--;
+
+ }
+
+ /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+
+ if ((blockSize & 0x1U) != 0U)
+ {
+ /* Read the input */
+ in = *pIn++;
+
+ /* out = b0 * x[n] + 0 * 0 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ out = __SMUAD(b0, in);
+
+#else
+
+ out = __SMUADX(b0, in);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc = b1 * x[n-1] + b2 * x[n-2] + out */
+ acc = __SMLALD(b1, state_in, out);
+ /* acc += a1 * y[n-1] + a2 * y[n-2] */
+ acc = __SMLALD(a1, state_out, acc);
+
+ /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ out = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ out = __SSAT(out, 16);
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q15_t) out;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
+ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ state_in = __PKHBT(in, state_in, 16);
+ state_out = __PKHBT(out, state_out, 16);
+
+#else
+
+ state_in = __PKHBT(state_in >> 16, in, 16);
+ state_out = __PKHBT(state_out >> 16, out, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ }
+
+ /* The first stage goes from the input wire to the output wire. */
+ /* Subsequent numStages occur in-place in the output wire */
+ pIn = pDst;
+
+ /* Reset the output pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the state array */
+ *__SIMD32(pState)++ = state_in;
+ *__SIMD32(pState)++ = state_out;
+
+
+ /* Decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q15_t Xn; /* temporary input */
+ q63_t acc; /* Accumulator */
+ int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ pCoeffs++; // skip the 0 coefficient
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q31_t) b0 *Xn;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q31_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q31_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q31_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q31_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = __SSAT((acc >> shift), 16);
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q15_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
new file mode 100644
index 0000000..da367ec
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
@@ -0,0 +1,392 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df1_q31.c
+ * Description: Processing function for the Q31 Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF1
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
+ * After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
+ * 1.31 format by discarding the low 32 bits.
+ *
+ * \par
+ * Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q63_t acc; /* accumulator */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q31_t *pState = S->pState; /* pState pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn; /* temporary input */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+
+#if defined (ARM_MATH_DSP)
+
+ q31_t acc_l, acc_h; /* temporary output variables */
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ /* The variable acc hold output values that are being computed:
+ *
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 , Yn2 variable is reused */
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Read the second input */
+ Xn2 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn2;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn1;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn2;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn1;
+
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* Read the third input */
+ Xn1 = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn1;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn2;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31, Yn2 variable is reused */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn2;
+
+ /* Read the forth input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn2;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn1;
+
+ /* The result is converted to 1.31, Yn1 variable is reused */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = Yn1;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ sample = (blockSize & 0x3U);
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = acc >> lShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q31_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = acc >> lShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q31_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+}
+
+
+
+
+/**
+ * @} end of BiquadCascadeDF1 group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f32.c
new file mode 100644
index 0000000..3f1ce03
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f32.c
@@ -0,0 +1,590 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df2T_f32.c
+ * Description: Processing function for floating-point transposed direct form II Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+* @ingroup groupFilters
+*/
+
+/**
+* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
+*
+* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
+* The filters are implemented as a cascade of second order Biquad sections.
+* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
+* Only floating-point data is supported.
+*
+* This function operate on blocks of input and output data and each call to the function
+* processes <code>blockSize</code> samples through the filter.
+* <code>pSrc</code> points to the array of input data and
+* <code>pDst</code> points to the array of output data.
+* Both arrays contain <code>blockSize</code> values.
+*
+* \par Algorithm
+* Each Biquad stage implements a second order filter using the difference equation:
+* <pre>
+* y[n] = b0 * x[n] + d1
+* d1 = b1 * x[n] + a1 * y[n] + d2
+* d2 = b2 * x[n] + a2 * y[n]
+* </pre>
+* where d1 and d2 represent the two state values.
+*
+* \par
+* A Biquad filter using a transposed Direct Form II structure is shown below.
+* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
+* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
+* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
+* Pay careful attention to the sign of the feedback coefficients.
+* Some design tools flip the sign of the feedback coefficients:
+* <pre>
+* y[n] = b0 * x[n] + d1;
+* d1 = b1 * x[n] - a1 * y[n] + d2;
+* d2 = b2 * x[n] - a2 * y[n];
+* </pre>
+* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
+*
+* \par
+* Higher order filters are realized as a cascade of second order sections.
+* <code>numStages</code> refers to the number of second order stages used.
+* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
+* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
+* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
+*
+* \par
+* <code>pState</code> points to the state variable array.
+* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
+* The state variables are arranged in the <code>pState</code> array as:
+* <pre>
+* {d11, d12, d21, d22, ...}
+* </pre>
+* where <code>d1x</code> refers to the state variables for the first Biquad and
+* <code>d2x</code> refers to the state variables for the second Biquad.
+* The state array has a total length of <code>2*numStages</code> values.
+* The state variables are updated after each block of data is processed; the coefficients are untouched.
+*
+* \par
+* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
+* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
+* That is why the Direct Form I structure supports Q15 and Q31 data types.
+* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
+* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
+* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
+*
+* \par Instance Structure
+* The coefficients and state variables for a filter are stored together in an instance data structure.
+* A separate instance structure must be defined for each filter.
+* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+*
+* \par Init Functions
+* There is also an associated initialization function.
+* The initialization function performs following operations:
+* - Sets the values of the internal structure fields.
+* - Zeros out the values in the state buffer.
+* To do this manually without calling the init function, assign the follow subfields of the instance structure:
+* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
+*
+* \par
+* Use of the initialization function is optional.
+* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+* To place an instance structure into a const data section, the instance structure must be manually initialized.
+* Set the values in the state buffer to zeros before static initialization.
+* For example, to statically initialize the instance structure use
+* <pre>
+* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
+* </pre>
+* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
+* <code>pCoeffs</code> is the address of the coefficient buffer;
+*
+*/
+
+/**
+* @addtogroup BiquadCascadeDF2T
+* @{
+*/
+
+/**
+* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+* @param[in] *S points to an instance of the filter data structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[out] *pDst points to the block of output data
+* @param[in] blockSize number of samples to process.
+* @return none.
+*/
+
+
+LOW_OPTIMIZATION_ENTER
+void arm_biquad_cascade_df2T_f32(
+const arm_biquad_cascade_df2T_instance_f32 * S,
+float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc1; /* accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn1; /* temporary input */
+ float32_t d1, d2; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+#if defined(ARM_MATH_CM7)
+
+ float32_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */
+ float32_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16;
+ float32_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */
+ float32_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16;
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = pCoeffs[0];
+ b1 = pCoeffs[1];
+ b2 = pCoeffs[2];
+ a1 = pCoeffs[3];
+ /* Apply loop unrolling and compute 16 output values simultaneously. */
+ sample = blockSize >> 4U;
+ a2 = pCoeffs[4];
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ pCoeffs += 5U;
+
+
+ /* First part of the processing with loop unrolling. Compute 16 outputs at a time.
+ ** a second loop below computes the remaining 1 to 15 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the first 2 inputs. 2 cycles */
+ Xn1 = pIn[0 ];
+ Xn2 = pIn[1 ];
+
+ /* Sample 1. 5 cycles */
+ Xn3 = pIn[2 ];
+ acc1 = b0 * Xn1 + d1;
+
+ Xn4 = pIn[3 ];
+ d1 = b1 * Xn1 + d2;
+
+ Xn5 = pIn[4 ];
+ d2 = b2 * Xn1;
+
+ Xn6 = pIn[5 ];
+ d1 += a1 * acc1;
+
+ Xn7 = pIn[6 ];
+ d2 += a2 * acc1;
+
+ /* Sample 2. 5 cycles */
+ Xn8 = pIn[7 ];
+ acc2 = b0 * Xn2 + d1;
+
+ Xn9 = pIn[8 ];
+ d1 = b1 * Xn2 + d2;
+
+ Xn10 = pIn[9 ];
+ d2 = b2 * Xn2;
+
+ Xn11 = pIn[10];
+ d1 += a1 * acc2;
+
+ Xn12 = pIn[11];
+ d2 += a2 * acc2;
+
+ /* Sample 3. 5 cycles */
+ Xn13 = pIn[12];
+ acc3 = b0 * Xn3 + d1;
+
+ Xn14 = pIn[13];
+ d1 = b1 * Xn3 + d2;
+
+ Xn15 = pIn[14];
+ d2 = b2 * Xn3;
+
+ Xn16 = pIn[15];
+ d1 += a1 * acc3;
+
+ pIn += 16;
+ d2 += a2 * acc3;
+
+ /* Sample 4. 5 cycles */
+ acc4 = b0 * Xn4 + d1;
+ d1 = b1 * Xn4 + d2;
+ d2 = b2 * Xn4;
+ d1 += a1 * acc4;
+ d2 += a2 * acc4;
+
+ /* Sample 5. 5 cycles */
+ acc5 = b0 * Xn5 + d1;
+ d1 = b1 * Xn5 + d2;
+ d2 = b2 * Xn5;
+ d1 += a1 * acc5;
+ d2 += a2 * acc5;
+
+ /* Sample 6. 5 cycles */
+ acc6 = b0 * Xn6 + d1;
+ d1 = b1 * Xn6 + d2;
+ d2 = b2 * Xn6;
+ d1 += a1 * acc6;
+ d2 += a2 * acc6;
+
+ /* Sample 7. 5 cycles */
+ acc7 = b0 * Xn7 + d1;
+ d1 = b1 * Xn7 + d2;
+ d2 = b2 * Xn7;
+ d1 += a1 * acc7;
+ d2 += a2 * acc7;
+
+ /* Sample 8. 5 cycles */
+ acc8 = b0 * Xn8 + d1;
+ d1 = b1 * Xn8 + d2;
+ d2 = b2 * Xn8;
+ d1 += a1 * acc8;
+ d2 += a2 * acc8;
+
+ /* Sample 9. 5 cycles */
+ acc9 = b0 * Xn9 + d1;
+ d1 = b1 * Xn9 + d2;
+ d2 = b2 * Xn9;
+ d1 += a1 * acc9;
+ d2 += a2 * acc9;
+
+ /* Sample 10. 5 cycles */
+ acc10 = b0 * Xn10 + d1;
+ d1 = b1 * Xn10 + d2;
+ d2 = b2 * Xn10;
+ d1 += a1 * acc10;
+ d2 += a2 * acc10;
+
+ /* Sample 11. 5 cycles */
+ acc11 = b0 * Xn11 + d1;
+ d1 = b1 * Xn11 + d2;
+ d2 = b2 * Xn11;
+ d1 += a1 * acc11;
+ d2 += a2 * acc11;
+
+ /* Sample 12. 5 cycles */
+ acc12 = b0 * Xn12 + d1;
+ d1 = b1 * Xn12 + d2;
+ d2 = b2 * Xn12;
+ d1 += a1 * acc12;
+ d2 += a2 * acc12;
+
+ /* Sample 13. 5 cycles */
+ acc13 = b0 * Xn13 + d1;
+ d1 = b1 * Xn13 + d2;
+ d2 = b2 * Xn13;
+
+ pOut[0 ] = acc1 ;
+ d1 += a1 * acc13;
+
+ pOut[1 ] = acc2 ;
+ d2 += a2 * acc13;
+
+ /* Sample 14. 5 cycles */
+ pOut[2 ] = acc3 ;
+ acc14 = b0 * Xn14 + d1;
+
+ pOut[3 ] = acc4 ;
+ d1 = b1 * Xn14 + d2;
+
+ pOut[4 ] = acc5 ;
+ d2 = b2 * Xn14;
+
+ pOut[5 ] = acc6 ;
+ d1 += a1 * acc14;
+
+ pOut[6 ] = acc7 ;
+ d2 += a2 * acc14;
+
+ /* Sample 15. 5 cycles */
+ pOut[7 ] = acc8 ;
+ pOut[8 ] = acc9 ;
+ acc15 = b0 * Xn15 + d1;
+
+ pOut[9 ] = acc10;
+ d1 = b1 * Xn15 + d2;
+
+ pOut[10] = acc11;
+ d2 = b2 * Xn15;
+
+ pOut[11] = acc12;
+ d1 += a1 * acc15;
+
+ pOut[12] = acc13;
+ d2 += a2 * acc15;
+
+ /* Sample 16. 5 cycles */
+ pOut[13] = acc14;
+ acc16 = b0 * Xn16 + d1;
+
+ pOut[14] = acc15;
+ d1 = b1 * Xn16 + d2;
+
+ pOut[15] = acc16;
+ d2 = b2 * Xn16;
+
+ sample--;
+ d1 += a1 * acc16;
+
+ pOut += 16;
+ d2 += a2 * acc16;
+ }
+
+ sample = blockSize & 0xFu;
+ while (sample > 0U) {
+ Xn1 = *pIn;
+ acc1 = b0 * Xn1 + d1;
+
+ pIn++;
+ d1 = b1 * Xn1 + d2;
+
+ *pOut = acc1;
+ d2 = b2 * Xn1;
+
+ pOut++;
+ d1 += a1 * acc1;
+
+ sample--;
+ d2 += a2 * acc1;
+ }
+
+ /* Store the updated state variables back into the state array */
+ pState[0] = d1;
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ pState[1] = d2;
+ /* decrement the loop counter */
+ stage--;
+
+ pState += 2U;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ } while (stage > 0U);
+
+#elif defined(ARM_MATH_CM0_FAMILY)
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn1 = *pIn++;
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc1 = (b0 * Xn1) + d1;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc1;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2 = (b2 * Xn1) + (a2 * acc1);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#else
+
+ float32_t Xn2, Xn3, Xn4; /* Input State variables */
+ float32_t acc2, acc3, acc4; /* accumulator */
+
+
+ float32_t p0, p1, p2, p3, p4, A1;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the four inputs */
+ Xn1 = pIn[0];
+ Xn2 = pIn[1];
+ Xn3 = pIn[2];
+ Xn4 = pIn[3];
+ pIn += 4;
+
+ p0 = b0 * Xn1;
+ p1 = b1 * Xn1;
+ acc1 = p0 + d1;
+ p0 = b0 * Xn2;
+ p3 = a1 * acc1;
+ p2 = b2 * Xn1;
+ A1 = p1 + p3;
+ p4 = a2 * acc1;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ p1 = b1 * Xn2;
+ acc2 = p0 + d1;
+ p0 = b0 * Xn3;
+ p3 = a1 * acc2;
+ p2 = b2 * Xn2;
+ A1 = p1 + p3;
+ p4 = a2 * acc2;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ p1 = b1 * Xn3;
+ acc3 = p0 + d1;
+ p0 = b0 * Xn4;
+ p3 = a1 * acc3;
+ p2 = b2 * Xn3;
+ A1 = p1 + p3;
+ p4 = a2 * acc3;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ acc4 = p0 + d1;
+ p1 = b1 * Xn4;
+ p3 = a1 * acc4;
+ p2 = b2 * Xn4;
+ A1 = p1 + p3;
+ p4 = a2 * acc4;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ pOut[0] = acc1;
+ pOut[1] = acc2;
+ pOut[2] = acc3;
+ pOut[3] = acc4;
+ pOut += 4;
+
+ sample--;
+ }
+
+ sample = blockSize & 0x3U;
+ while (sample > 0U) {
+ Xn1 = *pIn++;
+
+ p0 = b0 * Xn1;
+ p1 = b1 * Xn1;
+ acc1 = p0 + d1;
+ p3 = a1 * acc1;
+ p2 = b2 * Xn1;
+ A1 = p1 + p3;
+ p4 = a2 * acc1;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ *pOut++ = acc1;
+
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#endif
+
+}
+LOW_OPTIMIZATION_EXIT
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c
new file mode 100644
index 0000000..8f8a830
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c
@@ -0,0 +1,590 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df2T_f64.c
+ * Description: Processing function for floating-point transposed direct form II Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+* @ingroup groupFilters
+*/
+
+/**
+* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
+*
+* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
+* The filters are implemented as a cascade of second order Biquad sections.
+* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
+* Only floating-point data is supported.
+*
+* This function operate on blocks of input and output data and each call to the function
+* processes <code>blockSize</code> samples through the filter.
+* <code>pSrc</code> points to the array of input data and
+* <code>pDst</code> points to the array of output data.
+* Both arrays contain <code>blockSize</code> values.
+*
+* \par Algorithm
+* Each Biquad stage implements a second order filter using the difference equation:
+* <pre>
+* y[n] = b0 * x[n] + d1
+* d1 = b1 * x[n] + a1 * y[n] + d2
+* d2 = b2 * x[n] + a2 * y[n]
+* </pre>
+* where d1 and d2 represent the two state values.
+*
+* \par
+* A Biquad filter using a transposed Direct Form II structure is shown below.
+* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
+* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
+* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
+* Pay careful attention to the sign of the feedback coefficients.
+* Some design tools flip the sign of the feedback coefficients:
+* <pre>
+* y[n] = b0 * x[n] + d1;
+* d1 = b1 * x[n] - a1 * y[n] + d2;
+* d2 = b2 * x[n] - a2 * y[n];
+* </pre>
+* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
+*
+* \par
+* Higher order filters are realized as a cascade of second order sections.
+* <code>numStages</code> refers to the number of second order stages used.
+* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
+* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
+* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
+*
+* \par
+* <code>pState</code> points to the state variable array.
+* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
+* The state variables are arranged in the <code>pState</code> array as:
+* <pre>
+* {d11, d12, d21, d22, ...}
+* </pre>
+* where <code>d1x</code> refers to the state variables for the first Biquad and
+* <code>d2x</code> refers to the state variables for the second Biquad.
+* The state array has a total length of <code>2*numStages</code> values.
+* The state variables are updated after each block of data is processed; the coefficients are untouched.
+*
+* \par
+* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
+* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
+* That is why the Direct Form I structure supports Q15 and Q31 data types.
+* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
+* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
+* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
+*
+* \par Instance Structure
+* The coefficients and state variables for a filter are stored together in an instance data structure.
+* A separate instance structure must be defined for each filter.
+* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+*
+* \par Init Functions
+* There is also an associated initialization function.
+* The initialization function performs following operations:
+* - Sets the values of the internal structure fields.
+* - Zeros out the values in the state buffer.
+* To do this manually without calling the init function, assign the follow subfields of the instance structure:
+* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
+*
+* \par
+* Use of the initialization function is optional.
+* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+* To place an instance structure into a const data section, the instance structure must be manually initialized.
+* Set the values in the state buffer to zeros before static initialization.
+* For example, to statically initialize the instance structure use
+* <pre>
+* arm_biquad_cascade_df2T_instance_f64 S1 = {numStages, pState, pCoeffs};
+* </pre>
+* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
+* <code>pCoeffs</code> is the address of the coefficient buffer;
+*
+*/
+
+/**
+* @addtogroup BiquadCascadeDF2T
+* @{
+*/
+
+/**
+* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+* @param[in] *S points to an instance of the filter data structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[out] *pDst points to the block of output data
+* @param[in] blockSize number of samples to process.
+* @return none.
+*/
+
+
+LOW_OPTIMIZATION_ENTER
+void arm_biquad_cascade_df2T_f64(
+const arm_biquad_cascade_df2T_instance_f64 * S,
+float64_t * pSrc,
+float64_t * pDst,
+uint32_t blockSize)
+{
+
+ float64_t *pIn = pSrc; /* source pointer */
+ float64_t *pOut = pDst; /* destination pointer */
+ float64_t *pState = S->pState; /* State pointer */
+ float64_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float64_t acc1; /* accumulator */
+ float64_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float64_t Xn1; /* temporary input */
+ float64_t d1, d2; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+#if defined(ARM_MATH_CM7)
+
+ float64_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */
+ float64_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16;
+ float64_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */
+ float64_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16;
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = pCoeffs[0];
+ b1 = pCoeffs[1];
+ b2 = pCoeffs[2];
+ a1 = pCoeffs[3];
+ /* Apply loop unrolling and compute 16 output values simultaneously. */
+ sample = blockSize >> 4U;
+ a2 = pCoeffs[4];
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ pCoeffs += 5U;
+
+
+ /* First part of the processing with loop unrolling. Compute 16 outputs at a time.
+ ** a second loop below computes the remaining 1 to 15 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the first 2 inputs. 2 cycles */
+ Xn1 = pIn[0 ];
+ Xn2 = pIn[1 ];
+
+ /* Sample 1. 5 cycles */
+ Xn3 = pIn[2 ];
+ acc1 = b0 * Xn1 + d1;
+
+ Xn4 = pIn[3 ];
+ d1 = b1 * Xn1 + d2;
+
+ Xn5 = pIn[4 ];
+ d2 = b2 * Xn1;
+
+ Xn6 = pIn[5 ];
+ d1 += a1 * acc1;
+
+ Xn7 = pIn[6 ];
+ d2 += a2 * acc1;
+
+ /* Sample 2. 5 cycles */
+ Xn8 = pIn[7 ];
+ acc2 = b0 * Xn2 + d1;
+
+ Xn9 = pIn[8 ];
+ d1 = b1 * Xn2 + d2;
+
+ Xn10 = pIn[9 ];
+ d2 = b2 * Xn2;
+
+ Xn11 = pIn[10];
+ d1 += a1 * acc2;
+
+ Xn12 = pIn[11];
+ d2 += a2 * acc2;
+
+ /* Sample 3. 5 cycles */
+ Xn13 = pIn[12];
+ acc3 = b0 * Xn3 + d1;
+
+ Xn14 = pIn[13];
+ d1 = b1 * Xn3 + d2;
+
+ Xn15 = pIn[14];
+ d2 = b2 * Xn3;
+
+ Xn16 = pIn[15];
+ d1 += a1 * acc3;
+
+ pIn += 16;
+ d2 += a2 * acc3;
+
+ /* Sample 4. 5 cycles */
+ acc4 = b0 * Xn4 + d1;
+ d1 = b1 * Xn4 + d2;
+ d2 = b2 * Xn4;
+ d1 += a1 * acc4;
+ d2 += a2 * acc4;
+
+ /* Sample 5. 5 cycles */
+ acc5 = b0 * Xn5 + d1;
+ d1 = b1 * Xn5 + d2;
+ d2 = b2 * Xn5;
+ d1 += a1 * acc5;
+ d2 += a2 * acc5;
+
+ /* Sample 6. 5 cycles */
+ acc6 = b0 * Xn6 + d1;
+ d1 = b1 * Xn6 + d2;
+ d2 = b2 * Xn6;
+ d1 += a1 * acc6;
+ d2 += a2 * acc6;
+
+ /* Sample 7. 5 cycles */
+ acc7 = b0 * Xn7 + d1;
+ d1 = b1 * Xn7 + d2;
+ d2 = b2 * Xn7;
+ d1 += a1 * acc7;
+ d2 += a2 * acc7;
+
+ /* Sample 8. 5 cycles */
+ acc8 = b0 * Xn8 + d1;
+ d1 = b1 * Xn8 + d2;
+ d2 = b2 * Xn8;
+ d1 += a1 * acc8;
+ d2 += a2 * acc8;
+
+ /* Sample 9. 5 cycles */
+ acc9 = b0 * Xn9 + d1;
+ d1 = b1 * Xn9 + d2;
+ d2 = b2 * Xn9;
+ d1 += a1 * acc9;
+ d2 += a2 * acc9;
+
+ /* Sample 10. 5 cycles */
+ acc10 = b0 * Xn10 + d1;
+ d1 = b1 * Xn10 + d2;
+ d2 = b2 * Xn10;
+ d1 += a1 * acc10;
+ d2 += a2 * acc10;
+
+ /* Sample 11. 5 cycles */
+ acc11 = b0 * Xn11 + d1;
+ d1 = b1 * Xn11 + d2;
+ d2 = b2 * Xn11;
+ d1 += a1 * acc11;
+ d2 += a2 * acc11;
+
+ /* Sample 12. 5 cycles */
+ acc12 = b0 * Xn12 + d1;
+ d1 = b1 * Xn12 + d2;
+ d2 = b2 * Xn12;
+ d1 += a1 * acc12;
+ d2 += a2 * acc12;
+
+ /* Sample 13. 5 cycles */
+ acc13 = b0 * Xn13 + d1;
+ d1 = b1 * Xn13 + d2;
+ d2 = b2 * Xn13;
+
+ pOut[0 ] = acc1 ;
+ d1 += a1 * acc13;
+
+ pOut[1 ] = acc2 ;
+ d2 += a2 * acc13;
+
+ /* Sample 14. 5 cycles */
+ pOut[2 ] = acc3 ;
+ acc14 = b0 * Xn14 + d1;
+
+ pOut[3 ] = acc4 ;
+ d1 = b1 * Xn14 + d2;
+
+ pOut[4 ] = acc5 ;
+ d2 = b2 * Xn14;
+
+ pOut[5 ] = acc6 ;
+ d1 += a1 * acc14;
+
+ pOut[6 ] = acc7 ;
+ d2 += a2 * acc14;
+
+ /* Sample 15. 5 cycles */
+ pOut[7 ] = acc8 ;
+ pOut[8 ] = acc9 ;
+ acc15 = b0 * Xn15 + d1;
+
+ pOut[9 ] = acc10;
+ d1 = b1 * Xn15 + d2;
+
+ pOut[10] = acc11;
+ d2 = b2 * Xn15;
+
+ pOut[11] = acc12;
+ d1 += a1 * acc15;
+
+ pOut[12] = acc13;
+ d2 += a2 * acc15;
+
+ /* Sample 16. 5 cycles */
+ pOut[13] = acc14;
+ acc16 = b0 * Xn16 + d1;
+
+ pOut[14] = acc15;
+ d1 = b1 * Xn16 + d2;
+
+ pOut[15] = acc16;
+ d2 = b2 * Xn16;
+
+ sample--;
+ d1 += a1 * acc16;
+
+ pOut += 16;
+ d2 += a2 * acc16;
+ }
+
+ sample = blockSize & 0xFu;
+ while (sample > 0U) {
+ Xn1 = *pIn;
+ acc1 = b0 * Xn1 + d1;
+
+ pIn++;
+ d1 = b1 * Xn1 + d2;
+
+ *pOut = acc1;
+ d2 = b2 * Xn1;
+
+ pOut++;
+ d1 += a1 * acc1;
+
+ sample--;
+ d2 += a2 * acc1;
+ }
+
+ /* Store the updated state variables back into the state array */
+ pState[0] = d1;
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ pState[1] = d2;
+ /* decrement the loop counter */
+ stage--;
+
+ pState += 2U;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ } while (stage > 0U);
+
+#elif defined(ARM_MATH_CM0_FAMILY)
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn1 = *pIn++;
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc1 = (b0 * Xn1) + d1;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc1;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1 = ((b1 * Xn1) + (a1 * acc1)) + d2;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2 = (b2 * Xn1) + (a2 * acc1);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#else
+
+ float64_t Xn2, Xn3, Xn4; /* Input State variables */
+ float64_t acc2, acc3, acc4; /* accumulator */
+
+
+ float64_t p0, p1, p2, p3, p4, A1;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the four inputs */
+ Xn1 = pIn[0];
+ Xn2 = pIn[1];
+ Xn3 = pIn[2];
+ Xn4 = pIn[3];
+ pIn += 4;
+
+ p0 = b0 * Xn1;
+ p1 = b1 * Xn1;
+ acc1 = p0 + d1;
+ p0 = b0 * Xn2;
+ p3 = a1 * acc1;
+ p2 = b2 * Xn1;
+ A1 = p1 + p3;
+ p4 = a2 * acc1;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ p1 = b1 * Xn2;
+ acc2 = p0 + d1;
+ p0 = b0 * Xn3;
+ p3 = a1 * acc2;
+ p2 = b2 * Xn2;
+ A1 = p1 + p3;
+ p4 = a2 * acc2;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ p1 = b1 * Xn3;
+ acc3 = p0 + d1;
+ p0 = b0 * Xn4;
+ p3 = a1 * acc3;
+ p2 = b2 * Xn3;
+ A1 = p1 + p3;
+ p4 = a2 * acc3;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ acc4 = p0 + d1;
+ p1 = b1 * Xn4;
+ p3 = a1 * acc4;
+ p2 = b2 * Xn4;
+ A1 = p1 + p3;
+ p4 = a2 * acc4;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ pOut[0] = acc1;
+ pOut[1] = acc2;
+ pOut[2] = acc3;
+ pOut[3] = acc4;
+ pOut += 4;
+
+ sample--;
+ }
+
+ sample = blockSize & 0x3U;
+ while (sample > 0U) {
+ Xn1 = *pIn++;
+
+ p0 = b0 * Xn1;
+ p1 = b1 * Xn1;
+ acc1 = p0 + d1;
+ p3 = a1 * acc1;
+ p2 = b2 * Xn1;
+ A1 = p1 + p3;
+ p4 = a2 * acc1;
+ d1 = A1 + d2;
+ d2 = p2 + p4;
+
+ *pOut++ = acc1;
+
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#endif
+
+}
+LOW_OPTIMIZATION_EXIT
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f32.c
new file mode 100644
index 0000000..6dfc985
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f32.c
@@ -0,0 +1,89 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df2T_init_f32.c
+ * Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF2T
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ *
+ * \par
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> is a pointer to state array.
+ * Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>.
+ * The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
+ * The state array has a total length of <code>2*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 2 * numStages */
+ memset(pState, 0, (2U * (uint32_t) numStages) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f64.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f64.c
new file mode 100644
index 0000000..8141da5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f64.c
@@ -0,0 +1,89 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_df2T_init_f64.c
+ * Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF2T
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ *
+ * \par
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> is a pointer to state array.
+ * Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>.
+ * The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
+ * The state array has a total length of <code>2*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cascade_df2T_init_f64(
+ arm_biquad_cascade_df2T_instance_f64 * S,
+ uint8_t numStages,
+ float64_t * pCoeffs,
+ float64_t * pState)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 2 * numStages */
+ memset(pState, 0, (2U * (uint32_t) numStages) * sizeof(float64_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_f32.c
new file mode 100644
index 0000000..36084e5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_f32.c
@@ -0,0 +1,670 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_stereo_df2T_f32.c
+ * Description: Processing function for floating-point transposed direct form II Biquad cascade filter. 2 channels
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+* @ingroup groupFilters
+*/
+
+/**
+* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
+*
+* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
+* The filters are implemented as a cascade of second order Biquad sections.
+* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
+* Only floating-point data is supported.
+*
+* This function operate on blocks of input and output data and each call to the function
+* processes <code>blockSize</code> samples through the filter.
+* <code>pSrc</code> points to the array of input data and
+* <code>pDst</code> points to the array of output data.
+* Both arrays contain <code>blockSize</code> values.
+*
+* \par Algorithm
+* Each Biquad stage implements a second order filter using the difference equation:
+* <pre>
+* y[n] = b0 * x[n] + d1
+* d1 = b1 * x[n] + a1 * y[n] + d2
+* d2 = b2 * x[n] + a2 * y[n]
+* </pre>
+* where d1 and d2 represent the two state values.
+*
+* \par
+* A Biquad filter using a transposed Direct Form II structure is shown below.
+* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
+* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
+* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
+* Pay careful attention to the sign of the feedback coefficients.
+* Some design tools flip the sign of the feedback coefficients:
+* <pre>
+* y[n] = b0 * x[n] + d1;
+* d1 = b1 * x[n] - a1 * y[n] + d2;
+* d2 = b2 * x[n] - a2 * y[n];
+* </pre>
+* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
+*
+* \par
+* Higher order filters are realized as a cascade of second order sections.
+* <code>numStages</code> refers to the number of second order stages used.
+* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
+* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
+* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
+*
+* \par
+* <code>pState</code> points to the state variable array.
+* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
+* The state variables are arranged in the <code>pState</code> array as:
+* <pre>
+* {d11, d12, d21, d22, ...}
+* </pre>
+* where <code>d1x</code> refers to the state variables for the first Biquad and
+* <code>d2x</code> refers to the state variables for the second Biquad.
+* The state array has a total length of <code>2*numStages</code> values.
+* The state variables are updated after each block of data is processed; the coefficients are untouched.
+*
+* \par
+* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
+* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
+* That is why the Direct Form I structure supports Q15 and Q31 data types.
+* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
+* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
+* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
+*
+* \par Instance Structure
+* The coefficients and state variables for a filter are stored together in an instance data structure.
+* A separate instance structure must be defined for each filter.
+* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+*
+* \par Init Functions
+* There is also an associated initialization function.
+* The initialization function performs following operations:
+* - Sets the values of the internal structure fields.
+* - Zeros out the values in the state buffer.
+* To do this manually without calling the init function, assign the follow subfields of the instance structure:
+* numStages, pCoeffs, pState. Also set all of the values in pState to zero.
+*
+* \par
+* Use of the initialization function is optional.
+* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+* To place an instance structure into a const data section, the instance structure must be manually initialized.
+* Set the values in the state buffer to zeros before static initialization.
+* For example, to statically initialize the instance structure use
+* <pre>
+* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
+* </pre>
+* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
+* <code>pCoeffs</code> is the address of the coefficient buffer;
+*
+*/
+
+/**
+* @addtogroup BiquadCascadeDF2T
+* @{
+*/
+
+/**
+* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+* @param[in] *S points to an instance of the filter data structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[out] *pDst points to the block of output data
+* @param[in] blockSize number of samples to process.
+* @return none.
+*/
+
+
+LOW_OPTIMIZATION_ENTER
+void arm_biquad_cascade_stereo_df2T_f32(
+const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc1a, acc1b; /* accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn1a, Xn1b; /* temporary input */
+ float32_t d1a, d2a, d1b, d2b; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+#if defined(ARM_MATH_CM7)
+
+ float32_t Xn2a, Xn3a, Xn4a, Xn5a, Xn6a, Xn7a, Xn8a; /* Input State variables */
+ float32_t Xn2b, Xn3b, Xn4b, Xn5b, Xn6b, Xn7b, Xn8b; /* Input State variables */
+ float32_t acc2a, acc3a, acc4a, acc5a, acc6a, acc7a, acc8a; /* Simulates the accumulator */
+ float32_t acc2b, acc3b, acc4b, acc5b, acc6b, acc7b, acc8b; /* Simulates the accumulator */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = pCoeffs[0];
+ b1 = pCoeffs[1];
+ b2 = pCoeffs[2];
+ a1 = pCoeffs[3];
+ /* Apply loop unrolling and compute 8 output values simultaneously. */
+ sample = blockSize >> 3U;
+ a2 = pCoeffs[4];
+
+ /*Reading the state values */
+ d1a = pState[0];
+ d2a = pState[1];
+ d1b = pState[2];
+ d2b = pState[3];
+
+ pCoeffs += 5U;
+
+ /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
+ ** a second loop below computes the remaining 1 to 7 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the first 2 inputs. 2 cycles */
+ Xn1a = pIn[0 ];
+ Xn1b = pIn[1 ];
+
+ /* Sample 1. 5 cycles */
+ Xn2a = pIn[2 ];
+ acc1a = b0 * Xn1a + d1a;
+
+ Xn2b = pIn[3 ];
+ d1a = b1 * Xn1a + d2a;
+
+ Xn3a = pIn[4 ];
+ d2a = b2 * Xn1a;
+
+ Xn3b = pIn[5 ];
+ d1a += a1 * acc1a;
+
+ Xn4a = pIn[6 ];
+ d2a += a2 * acc1a;
+
+ /* Sample 2. 5 cycles */
+ Xn4b = pIn[7 ];
+ acc1b = b0 * Xn1b + d1b;
+
+ Xn5a = pIn[8 ];
+ d1b = b1 * Xn1b + d2b;
+
+ Xn5b = pIn[9 ];
+ d2b = b2 * Xn1b;
+
+ Xn6a = pIn[10];
+ d1b += a1 * acc1b;
+
+ Xn6b = pIn[11];
+ d2b += a2 * acc1b;
+
+ /* Sample 3. 5 cycles */
+ Xn7a = pIn[12];
+ acc2a = b0 * Xn2a + d1a;
+
+ Xn7b = pIn[13];
+ d1a = b1 * Xn2a + d2a;
+
+ Xn8a = pIn[14];
+ d2a = b2 * Xn2a;
+
+ Xn8b = pIn[15];
+ d1a += a1 * acc2a;
+
+ pIn += 16;
+ d2a += a2 * acc2a;
+
+ /* Sample 4. 5 cycles */
+ acc2b = b0 * Xn2b + d1b;
+ d1b = b1 * Xn2b + d2b;
+ d2b = b2 * Xn2b;
+ d1b += a1 * acc2b;
+ d2b += a2 * acc2b;
+
+ /* Sample 5. 5 cycles */
+ acc3a = b0 * Xn3a + d1a;
+ d1a = b1 * Xn3a + d2a;
+ d2a = b2 * Xn3a;
+ d1a += a1 * acc3a;
+ d2a += a2 * acc3a;
+
+ /* Sample 6. 5 cycles */
+ acc3b = b0 * Xn3b + d1b;
+ d1b = b1 * Xn3b + d2b;
+ d2b = b2 * Xn3b;
+ d1b += a1 * acc3b;
+ d2b += a2 * acc3b;
+
+ /* Sample 7. 5 cycles */
+ acc4a = b0 * Xn4a + d1a;
+ d1a = b1 * Xn4a + d2a;
+ d2a = b2 * Xn4a;
+ d1a += a1 * acc4a;
+ d2a += a2 * acc4a;
+
+ /* Sample 8. 5 cycles */
+ acc4b = b0 * Xn4b + d1b;
+ d1b = b1 * Xn4b + d2b;
+ d2b = b2 * Xn4b;
+ d1b += a1 * acc4b;
+ d2b += a2 * acc4b;
+
+ /* Sample 9. 5 cycles */
+ acc5a = b0 * Xn5a + d1a;
+ d1a = b1 * Xn5a + d2a;
+ d2a = b2 * Xn5a;
+ d1a += a1 * acc5a;
+ d2a += a2 * acc5a;
+
+ /* Sample 10. 5 cycles */
+ acc5b = b0 * Xn5b + d1b;
+ d1b = b1 * Xn5b + d2b;
+ d2b = b2 * Xn5b;
+ d1b += a1 * acc5b;
+ d2b += a2 * acc5b;
+
+ /* Sample 11. 5 cycles */
+ acc6a = b0 * Xn6a + d1a;
+ d1a = b1 * Xn6a + d2a;
+ d2a = b2 * Xn6a;
+ d1a += a1 * acc6a;
+ d2a += a2 * acc6a;
+
+ /* Sample 12. 5 cycles */
+ acc6b = b0 * Xn6b + d1b;
+ d1b = b1 * Xn6b + d2b;
+ d2b = b2 * Xn6b;
+ d1b += a1 * acc6b;
+ d2b += a2 * acc6b;
+
+ /* Sample 13. 5 cycles */
+ acc7a = b0 * Xn7a + d1a;
+ d1a = b1 * Xn7a + d2a;
+
+ pOut[0 ] = acc1a ;
+ d2a = b2 * Xn7a;
+
+ pOut[1 ] = acc1b ;
+ d1a += a1 * acc7a;
+
+ pOut[2 ] = acc2a ;
+ d2a += a2 * acc7a;
+
+ /* Sample 14. 5 cycles */
+ pOut[3 ] = acc2b ;
+ acc7b = b0 * Xn7b + d1b;
+
+ pOut[4 ] = acc3a ;
+ d1b = b1 * Xn7b + d2b;
+
+ pOut[5 ] = acc3b ;
+ d2b = b2 * Xn7b;
+
+ pOut[6 ] = acc4a ;
+ d1b += a1 * acc7b;
+
+ pOut[7 ] = acc4b ;
+ d2b += a2 * acc7b;
+
+ /* Sample 15. 5 cycles */
+ pOut[8 ] = acc5a ;
+ acc8a = b0 * Xn8a + d1a;
+
+ pOut[9 ] = acc5b;
+ d1a = b1 * Xn8a + d2a;
+
+ pOut[10] = acc6a;
+ d2a = b2 * Xn8a;
+
+ pOut[11] = acc6b;
+ d1a += a1 * acc8a;
+
+ pOut[12] = acc7a;
+ d2a += a2 * acc8a;
+
+ /* Sample 16. 5 cycles */
+ pOut[13] = acc7b;
+ acc8b = b0 * Xn8b + d1b;
+
+ pOut[14] = acc8a;
+ d1b = b1 * Xn8b + d2b;
+
+ pOut[15] = acc8b;
+ d2b = b2 * Xn8b;
+
+ sample--;
+ d1b += a1 * acc8b;
+
+ pOut += 16;
+ d2b += a2 * acc8b;
+ }
+
+ sample = blockSize & 0x7U;
+ while (sample > 0U) {
+ /* Read the input */
+ Xn1a = *pIn++; //Channel a
+ Xn1b = *pIn++; //Channel b
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc1a = (b0 * Xn1a) + d1a;
+ acc1b = (b0 * Xn1b) + d1b;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc1a;
+ *pOut++ = acc1b;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
+ d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2a = (b2 * Xn1a) + (a2 * acc1a);
+ d2b = (b2 * Xn1b) + (a2 * acc1b);
+
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ pState[0] = d1a;
+ pState[1] = d2a;
+
+ pState[2] = d1b;
+ pState[3] = d2b;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+ /* decrement the loop counter */
+ stage--;
+
+ pState += 4U;
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ } while (stage > 0U);
+
+#elif defined(ARM_MATH_CM0_FAMILY)
+
+ /* Run the below code for Cortex-M0 */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1a = pState[0];
+ d2a = pState[1];
+ d1b = pState[2];
+ d2b = pState[3];
+
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn1a = *pIn++; //Channel a
+ Xn1b = *pIn++; //Channel b
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc1a = (b0 * Xn1a) + d1a;
+ acc1b = (b0 * Xn1b) + d1b;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc1a;
+ *pOut++ = acc1b;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
+ d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2a = (b2 * Xn1a) + (a2 * acc1a);
+ d2b = (b2 * Xn1b) + (a2 * acc1b);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1a;
+ *pState++ = d2a;
+ *pState++ = d1b;
+ *pState++ = d2b;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#else
+
+ float32_t Xn2a, Xn3a, Xn4a; /* Input State variables */
+ float32_t Xn2b, Xn3b, Xn4b; /* Input State variables */
+ float32_t acc2a, acc3a, acc4a; /* accumulator */
+ float32_t acc2b, acc3b, acc4b; /* accumulator */
+ float32_t p0a, p1a, p2a, p3a, p4a, A1a;
+ float32_t p0b, p1b, p2b, p3b, p4b, A1b;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1a = pState[0];
+ d2a = pState[1];
+ d1b = pState[2];
+ d2b = pState[3];
+
+ /* Apply loop unrolling and compute 4 output values simultaneously. */
+ sample = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (sample > 0U) {
+
+ /* y[n] = b0 * x[n] + d1 */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ /* d2 = b2 * x[n] + a2 * y[n] */
+
+ /* Read the four inputs */
+ Xn1a = pIn[0];
+ Xn1b = pIn[1];
+ Xn2a = pIn[2];
+ Xn2b = pIn[3];
+ Xn3a = pIn[4];
+ Xn3b = pIn[5];
+ Xn4a = pIn[6];
+ Xn4b = pIn[7];
+ pIn += 8;
+
+ p0a = b0 * Xn1a;
+ p0b = b0 * Xn1b;
+ p1a = b1 * Xn1a;
+ p1b = b1 * Xn1b;
+ acc1a = p0a + d1a;
+ acc1b = p0b + d1b;
+ p0a = b0 * Xn2a;
+ p0b = b0 * Xn2b;
+ p3a = a1 * acc1a;
+ p3b = a1 * acc1b;
+ p2a = b2 * Xn1a;
+ p2b = b2 * Xn1b;
+ A1a = p1a + p3a;
+ A1b = p1b + p3b;
+ p4a = a2 * acc1a;
+ p4b = a2 * acc1b;
+ d1a = A1a + d2a;
+ d1b = A1b + d2b;
+ d2a = p2a + p4a;
+ d2b = p2b + p4b;
+
+ p1a = b1 * Xn2a;
+ p1b = b1 * Xn2b;
+ acc2a = p0a + d1a;
+ acc2b = p0b + d1b;
+ p0a = b0 * Xn3a;
+ p0b = b0 * Xn3b;
+ p3a = a1 * acc2a;
+ p3b = a1 * acc2b;
+ p2a = b2 * Xn2a;
+ p2b = b2 * Xn2b;
+ A1a = p1a + p3a;
+ A1b = p1b + p3b;
+ p4a = a2 * acc2a;
+ p4b = a2 * acc2b;
+ d1a = A1a + d2a;
+ d1b = A1b + d2b;
+ d2a = p2a + p4a;
+ d2b = p2b + p4b;
+
+ p1a = b1 * Xn3a;
+ p1b = b1 * Xn3b;
+ acc3a = p0a + d1a;
+ acc3b = p0b + d1b;
+ p0a = b0 * Xn4a;
+ p0b = b0 * Xn4b;
+ p3a = a1 * acc3a;
+ p3b = a1 * acc3b;
+ p2a = b2 * Xn3a;
+ p2b = b2 * Xn3b;
+ A1a = p1a + p3a;
+ A1b = p1b + p3b;
+ p4a = a2 * acc3a;
+ p4b = a2 * acc3b;
+ d1a = A1a + d2a;
+ d1b = A1b + d2b;
+ d2a = p2a + p4a;
+ d2b = p2b + p4b;
+
+ acc4a = p0a + d1a;
+ acc4b = p0b + d1b;
+ p1a = b1 * Xn4a;
+ p1b = b1 * Xn4b;
+ p3a = a1 * acc4a;
+ p3b = a1 * acc4b;
+ p2a = b2 * Xn4a;
+ p2b = b2 * Xn4b;
+ A1a = p1a + p3a;
+ A1b = p1b + p3b;
+ p4a = a2 * acc4a;
+ p4b = a2 * acc4b;
+ d1a = A1a + d2a;
+ d1b = A1b + d2b;
+ d2a = p2a + p4a;
+ d2b = p2b + p4b;
+
+ pOut[0] = acc1a;
+ pOut[1] = acc1b;
+ pOut[2] = acc2a;
+ pOut[3] = acc2b;
+ pOut[4] = acc3a;
+ pOut[5] = acc3b;
+ pOut[6] = acc4a;
+ pOut[7] = acc4b;
+ pOut += 8;
+
+ sample--;
+ }
+
+ sample = blockSize & 0x3U;
+ while (sample > 0U) {
+ Xn1a = *pIn++;
+ Xn1b = *pIn++;
+
+ p0a = b0 * Xn1a;
+ p0b = b0 * Xn1b;
+ p1a = b1 * Xn1a;
+ p1b = b1 * Xn1b;
+ acc1a = p0a + d1a;
+ acc1b = p0b + d1b;
+ p3a = a1 * acc1a;
+ p3b = a1 * acc1b;
+ p2a = b2 * Xn1a;
+ p2b = b2 * Xn1b;
+ A1a = p1a + p3a;
+ A1b = p1b + p3b;
+ p4a = a2 * acc1a;
+ p4b = a2 * acc1b;
+ d1a = A1a + d2a;
+ d1b = A1b + d2b;
+ d2a = p2a + p4a;
+ d2b = p2b + p4b;
+
+ *pOut++ = acc1a;
+ *pOut++ = acc1b;
+
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1a;
+ *pState++ = d2a;
+ *pState++ = d1b;
+ *pState++ = d2b;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+#endif
+
+}
+LOW_OPTIMIZATION_EXIT
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_init_f32.c
new file mode 100644
index 0000000..b847c6e
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_init_f32.c
@@ -0,0 +1,89 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_biquad_cascade_stereo_df2T_init_f32.c
+ * Description: Initialization function for floating-point transposed direct form II Biquad cascade filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup BiquadCascadeDF2T
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ *
+ * <b>Coefficient and State Ordering:</b>
+ * \par
+ * The coefficients are stored in the array <code>pCoeffs</code> in the following order:
+ * <pre>
+ * {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
+ * </pre>
+ *
+ * \par
+ * where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
+ * <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
+ * and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
+ *
+ * \par
+ * The <code>pState</code> is a pointer to state array.
+ * Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code> for each channel.
+ * The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
+ * The state array has a total length of <code>2*numStages</code> values.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ */
+
+void arm_biquad_cascade_stereo_df2T_init_f32(
+ arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState)
+{
+ /* Assign filter stages */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always 4 * numStages */
+ memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+}
+
+/**
+ * @} end of BiquadCascadeDF2T group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
new file mode 100644
index 0000000..906f7ab
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
@@ -0,0 +1,635 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_f32.c
+ * Description: Convolution of floating-point sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup Conv Convolution
+ *
+ * Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
+ * Convolution is similar to correlation and is frequently used in filtering and data analysis.
+ * The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
+ * The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
+ *
+ * \par Algorithm
+ * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
+ * Then the convolution
+ *
+ * <pre>
+ * c[n] = a[n] * b[n]
+ * </pre>
+ *
+ * \par
+ * is defined as
+ * \image html ConvolutionEquation.gif
+ * \par
+ * Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
+ * <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
+ * <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
+ * The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
+ *
+ * \par
+ * Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
+ * the signal <code>b[n]</code> slides over <code>a[n]</code>.
+ * For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
+ *
+ * \par
+ * Note that convolution is a commutative operation:
+ *
+ * <pre>
+ * a[n] * b[n] = b[n] * a[n].
+ * </pre>
+ *
+ * \par
+ * This means that switching the A and B arguments to the convolution functions has no effect.
+ *
+ * <b>Fixed-Point Behavior</b>
+ *
+ * \par
+ * Convolution requires summing up a large number of intermediate products.
+ * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
+ * Refer to the function specific documentation below for further details of the particular algorithm used.
+ *
+ *
+ * <b>Fast Versions</b>
+ *
+ * \par
+ * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
+ * the input signals should be scaled down to avoid intermediate overflows.
+ *
+ *
+ * <b>Opt Versions</b>
+ *
+ * \par
+ * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
+ * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ float32_t *pIn1; /* inputA pointer */
+ float32_t *pIn2; /* inputB pointer */
+ float32_t *pOut = pDst; /* output pointer */
+ float32_t *px; /* Intermediate inputA pointer */
+ float32_t *py; /* Intermediate inputB pointer */
+ float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* x[1] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* x[2] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* x[3] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 += x0 * c0;
+
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 += x2 * c0;
+
+ /* acc3 += x[3] * y[srcBLen - 1] */
+ acc3 += x3 * c0;
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py--);
+
+ /* Read x[4] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 += x1 * c0;
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 += x2 * c0;
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 += x3 * c0;
+ /* acc3 += x[4] * y[srcBLen - 2] */
+ acc3 += x0 * c0;
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 += x2 * c0;
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 += x3 * c0;
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 += x0 * c0;
+ /* acc3 += x[5] * y[srcBLen - 2] */
+ acc3 += x1 * c0;
+
+ /* Read y[srcBLen - 4] sample */
+ c0 = *(py--);
+
+ /* Read x[6] sample */
+ x2 = *(px + 3U);
+ px += 4U;
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[srcBLen - 4] */
+ acc0 += x3 * c0;
+ /* acc1 += x[4] * y[srcBLen - 4] */
+ acc1 += x0 * c0;
+ /* acc2 += x[5] * y[srcBLen - 4] */
+ acc2 += x1 * c0;
+ /* acc3 += x[6] * y[srcBLen - 4] */
+ acc3 += x2 * c0;
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += x0 * c0;
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += x1 * c0;
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += x2 * c0;
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 += x3 * c0;
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc0;
+ *pOut++ = acc1;
+ *pOut++ = acc2;
+ *pOut++ = acc3;
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB; /* inputB pointer */
+ float32_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i < ((srcALen + srcBLen) - 1U); i++)
+ {
+ /* Initialize sum with zero to carry out MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pIn1[j] * pIn2[i - j];
+ }
+ }
+ /* Store the output in the destination buffer */
+ pDst[i] = sum;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
new file mode 100644
index 0000000..26c37f0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
@@ -0,0 +1,531 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_fast_opt_q15.c
+ * Description: Fast Q15 Convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results
+ * but provides only a single guard bit. There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ */
+
+void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
+ q31_t y1, y2; /* State variables */
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ uint32_t tapCnt; /* loop count */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t a, b;
+
+#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+
+ /* Copy smaller length input sequence in reverse order into second scratch buffer */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Assuming scratch1 buffer is aligned by 32-bit */
+ /* Fill (srcBLen - 1U) zeros in scratch1 buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr1, srcALen);
+
+ /* Update pointers */
+ pScr1 += srcALen;
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ /* First part of the processing with loop unrolling process 4 data points at a time.
+ ** a second loop below process for the remaining 1 to 3 samples. */
+
+ /* Actual convolution process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = _SIMD32_OFFSET(pScr1);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x2, y2, acc0);
+ acc2 = __SMLAD(x1, y2, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr1 + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+#else
+
+ /* Read four samples from smaller buffer */
+ a = *pIn2;
+ b = *(pIn2 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ y1 = __PKHBT(a, b, 16);
+#else
+ y1 = __PKHBT(b, a, 16);
+#endif
+
+ a = *(pIn2 + 2);
+ b = *(pIn2 + 3);
+#ifndef ARM_MATH_BIG_ENDIAN
+ y2 = __PKHBT(a, b, 16);
+#else
+ y2 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ acc2 = __SMLAD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ a = *pScr1;
+ b = *(pScr1 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(a, b, 16);
+#else
+ x1 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x2, y2, acc0);
+
+ acc2 = __SMLAD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ a = *(pScr1 + 2);
+ b = *(pScr1 + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x2 = __PKHBT(a, b, 16);
+#else
+ x2 = __PKHBT(b, a, 16);
+#endif
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ acc0 += (*pScr1++ * *pIn2++);
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c
new file mode 100644
index 0000000..16b0424
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q15.c
@@ -0,0 +1,1398 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_fast_q15.c
+ * Description: Fast Q15 Convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results
+ * but provides only a single guard bit. There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ */
+
+void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+#ifndef UNALIGNED_SUPPORT_DISABLE
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + (count - 1U);
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px+1);
+ px+= 2U;
+
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLADX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px+1);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLADX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLADX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLADX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLADX(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px+2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px+3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLADX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+
+ /* Read y[srcBLen - 7] */
+ c0 = *(py-1);
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px+2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16);
+ *__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16);
+
+#else
+
+ *__SIMD32(pOut)++ = __PKHBT((acc1 >> 15), (acc0 >> 15), 16);
+ *__SIMD32(pOut)++ = __PKHBT((acc3 >> 15), (acc2 >> 15), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = blockSize3 >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
+ * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
+ * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
+ q15_t a, b;
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ py++;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + (count - 1U);
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1] samples */
+ a = *px++;
+ b = *px++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *px;
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *px;
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ a = *py;
+ b = *(py+1);
+ py -= 2;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLADX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x2 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(b, a, 16);
+
+#else
+
+ x2 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLADX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLADX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ a = *py;
+ b = *(py+1);
+ py -= 2;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLADX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLADX(x3, c0, acc1);
+
+ /* Read x[4], x[5], x[6] */
+ a = *(px + 2);
+ b = *(px + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLADX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ a = *px;
+ b = *(px+1);
+ px++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ a = *py;
+ b = *(py+1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ a = *py;
+ b = *(py+1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+
+ /* Read y[srcBLen - 7] */
+ c0 = *(py-1);
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ a = *(px+2);
+ b = *(px+3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = (q15_t)(acc0 >> 15);
+ *pOut++ = (q15_t)(acc1 >> 15);
+ *pOut++ = (q15_t)(acc2 >> 15);
+ *pOut++ = (q15_t)(acc3 >> 15);
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = blockSize3 >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ py++;
+
+ while (k > 0U)
+ {
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q31.c
new file mode 100644
index 0000000..bc57221
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_q31.c
@@ -0,0 +1,565 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_fast_q31.c
+ * Description: Fast Q31 Convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ * These intermediate results are accumulated in a 32-bit register in 2.30 format.
+ * Finally, the accumulator is saturated and converted to a 1.31 result.
+ *
+ * \par
+ * The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signals must be scaled down.
+ * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ *
+ * \par
+ * See <code>arm_conv_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
+ */
+
+void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[1] * y[srcBLen - 2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[2] * y[srcBLen - 3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[3] * y[srcBLen - 4] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+
+ /* acc3 += x[3] * y[srcBLen - 1] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py--);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc3 += x[4] * y[srcBLen - 2] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc1 += x[3] * y[srcBLen - 3] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc2 += x[4] * y[srcBLen - 3] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc3 += x[5] * y[srcBLen - 3] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read y[srcBLen - 4] sample */
+ c0 = *(py--);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[srcBLen - 4] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc1 += x[4] * y[srcBLen - 4] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc2 += x[5] * y[srcBLen - 4] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc3 += x[6] * y[srcBLen - 4] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = (q31_t) (acc0 << 1);
+ *pOut++ = (q31_t) (acc1 << 1);
+ *pOut++ = (q31_t) (acc2 << 1);
+ *pOut++ = (q31_t) (acc3 << 1);
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q15.c
new file mode 100644
index 0000000..47f6f84
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q15.c
@@ -0,0 +1,533 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_opt_q15.c
+ * Description: Convolution of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * This approach provides 33 guard bits and there is no risk of overflow.
+ * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ *
+ *
+ * \par
+ * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ *
+ */
+
+void arm_conv_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q63_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
+ q31_t y1, y2; /* State variables */
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ uint32_t tapCnt; /* loop count */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t a, b;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ /* Copy smaller length input sequence in reverse order into second scratch buffer */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Assuming scratch1 buffer is aligned by 32-bit */
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr1, srcALen);
+
+ /* Update pointers */
+ pScr1 += srcALen;
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif
+
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ /* First part of the processing with loop unrolling process 4 data points at a time.
+ ** a second loop below process for the remaining 1 to 3 samples. */
+
+ /* Actual convolution process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ /* multiply and accumlate */
+ acc0 = __SMLALD(x1, y1, acc0);
+ acc2 = __SMLALD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLALDX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = _SIMD32_OFFSET(pScr1);
+
+ /* multiply and accumlate */
+ acc0 = __SMLALD(x2, y2, acc0);
+ acc2 = __SMLALD(x1, y2, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y1, acc3);
+ acc1 = __SMLALDX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr1 + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y2, acc3);
+
+#else
+
+ /* Read four samples from smaller buffer */
+ a = *pIn2;
+ b = *(pIn2 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ y1 = __PKHBT(a, b, 16);
+#else
+ y1 = __PKHBT(b, a, 16);
+#endif
+
+ a = *(pIn2 + 2);
+ b = *(pIn2 + 3);
+#ifndef ARM_MATH_BIG_ENDIAN
+ y2 = __PKHBT(a, b, 16);
+#else
+ y2 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLALD(x1, y1, acc0);
+
+ acc2 = __SMLALD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLALDX(x3, y1, acc1);
+
+ a = *pScr1;
+ b = *(pScr1 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(a, b, 16);
+#else
+ x1 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLALD(x2, y2, acc0);
+
+ acc2 = __SMLALD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y1, acc3);
+
+ acc1 = __SMLALDX(x3, y2, acc1);
+
+ a = *(pScr1 + 2);
+ b = *(pScr1 + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x2 = __PKHBT(a, b, 16);
+#else
+ x2 = __PKHBT(b, a, 16);
+#endif
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y2, acc3);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ acc0 += (*pScr1++ * *pIn2++);
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+}
+
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q7.c
new file mode 100644
index 0000000..1dc2e49
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_opt_q7.c
@@ -0,0 +1,423 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_opt_q7.c
+ * Description: Convolution of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
+ * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
+ *
+ */
+
+void arm_conv_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
+ q15_t x4; /* Temporary input variable */
+ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
+ uint32_t j, k, blkCnt, tapCnt; /* loop counter */
+ q7_t *px; /* Temporary input1 pointer */
+ q15_t *py; /* Temporary input2 pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3, y1; /* Temporary input variables */
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t out0, out1, out2, out3; /* temporary variables */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2;
+
+ /* points to smaller length sequence */
+ px = pIn2 + srcBLen - 1;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = (q7_t *) py;
+
+ pScr2 = py;
+
+ /* Actual convolution process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2 + 2U);
+
+ acc0 = __SMLAD(x2, y1, acc0);
+
+ acc2 = __SMLAD(x1, y1, acc2);
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ x2 = *__SIMD32(pScr1)++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ pScr2 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ out0 = (q7_t) (__SSAT(acc0 >> 7U, 8));
+ out1 = (q7_t) (__SSAT(acc1 >> 7U, 8));
+ out2 = (q7_t) (__SSAT(acc2 >> 7U, 8));
+ out3 = (q7_t) (__SSAT(acc3 >> 7U, 8));
+
+ *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3);
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+ acc0 += (*pScr1++ * *pScr2++);
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+}
+
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_f32.c
new file mode 100644
index 0000000..9eae124
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_f32.c
@@ -0,0 +1,678 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_f32.c
+ * Description: Partial convolution of floating-point sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup PartialConv Partial Convolution
+ *
+ * Partial Convolution is equivalent to Convolution except that a subset of the output samples is generated.
+ * Each function has two additional arguments.
+ * <code>firstIndex</code> specifies the starting index of the subset of output samples.
+ * <code>numPoints</code> is the number of output samples to compute.
+ * The function computes the output in the range
+ * <code>[firstIndex, ..., firstIndex+numPoints-1]</code>.
+ * The output array <code>pDst</code> contains <code>numPoints</code> values.
+ *
+ * The allowable range of output indices is [0 srcALen+srcBLen-2].
+ * If the requested subset does not fall in this range then the functions return ARM_MATH_ARGUMENT_ERROR.
+ * Otherwise the functions return ARM_MATH_SUCCESS.
+ * \note Refer arm_conv_f32() for details on fixed point behavior.
+ *
+ *
+ * <b>Fast Versions</b>
+ *
+ * \par
+ * Fast versions are supported for Q31 and Q15 of partial convolution. Cycles for Fast versions are less compared to Q31 and Q15 of partial conv and the design requires
+ * the input signals should be scaled down to avoid intermediate overflows.
+ *
+ *
+ * <b>Opt Versions</b>
+ *
+ * \par
+ * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
+ * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of partial convolution
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB; /* inputB pointer */
+ float32_t *pOut = pDst; /* output pointer */
+ float32_t *px; /* Intermediate inputA pointer */
+ float32_t *py; /* Intermediate inputB pointer */
+ float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t j, k, count = 0U, blkCnt, check;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex;
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = ((int32_t) check - blockSize3) -
+ (blockSize1 + (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + firstIndex;
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* x[1] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* x[2] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* x[3] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc1;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = ((uint32_t) blockSize2 >> 2U);
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 += x0 * c0;
+
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 += x2 * c0;
+
+ /* acc3 += x[3] * y[srcBLen - 1] */
+ acc3 += x3 * c0;
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py--);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 += x1 * c0;
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 += x2 * c0;
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 += x3 * c0;
+ /* acc3 += x[4] * y[srcBLen - 2] */
+ acc3 += x0 * c0;
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 += x2 * c0;
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 += x3 * c0;
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 += x0 * c0;
+ /* acc3 += x[5] * y[srcBLen - 2] */
+ acc3 += x1 * c0;
+
+ /* Read y[srcBLen - 4] sample */
+ c0 = *(py--);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[srcBLen - 4] */
+ acc0 += x3 * c0;
+ /* acc1 += x[4] * y[srcBLen - 4] */
+ acc1 += x0 * c0;
+ /* acc2 += x[5] * y[srcBLen - 4] */
+ acc2 += x1 * c0;
+ /* acc3 += x[6] * y[srcBLen - 4] */
+ acc3 += x2 * c0;
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += x0 * c0;
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += x1 * c0;
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += x2 * c0;
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 += x3 * c0;
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc0;
+ *pOut++ = acc1;
+ *pOut++ = acc2;
+ *pOut++ = acc3;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB; /* inputB pointer */
+ float32_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+ /* Loop to calculate convolution for output length number of values */
+ for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations for inputs */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pIn1[j] * pIn2[i - j];
+ }
+ }
+ /* Store the output in the destination buffer */
+ pDst[i] = sum;
+ }
+ /* set status as ARM_SUCCESS as there are no argument errors */
+ status = ARM_MATH_SUCCESS;
+ }
+ return (status);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_opt_q15.c
new file mode 100644
index 0000000..f469d1f
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_opt_q15.c
@@ -0,0 +1,756 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_fast_opt_q15.c
+ * Description: Fast Q15 Partial convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
+ q31_t y1, y2; /* State variables */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ arm_status status;
+
+ uint32_t tapCnt; /* loop count */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+
+ /* Copy smaller length input sequence in reverse order into second scratch buffer */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Assuming scratch1 buffer is aligned by 32-bit */
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr1, srcALen);
+
+ /* Update pointers */
+ pScr1 += srcALen;
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ pScratch1 += firstIndex;
+
+ pOut = pDst + firstIndex;
+
+ /* First part of the processing with loop unrolling process 4 data points at a time.
+ ** a second loop below process for the remaining 1 to 3 samples. */
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = _SIMD32_OFFSET(pScr1);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x2, y2, acc0);
+
+ acc2 = __SMLAD(x1, y2, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr1 + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = numPoints & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read two samples from smaller buffer */
+ y1 = *__SIMD32(pIn2)++;
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+ /* Return to application */
+ return (status);
+}
+
+#else
+
+arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ arm_status status; /* Status variable */
+ uint32_t tapCnt; /* loop count */
+ q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */
+ q15_t y10, y11; /* Temporary variables to hold srcB buffer */
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ pScratch1 += firstIndex;
+
+ pOut = pDst + firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *pScr1++;
+ x21 = *pScr1++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read two samples from smaller buffer */
+ y10 = *pIn2;
+ y11 = *(pIn2 + 1U);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+ acc2 += (q31_t) x20 *y10;
+ acc2 += (q31_t) x21 *y11;
+
+ /* multiply and accumlate */
+ acc1 += (q31_t) x11 *y10;
+ acc1 += (q31_t) x20 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1;
+ x11 = *(pScr1 + 1U);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x21 *y10;
+ acc3 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch2 buffer */
+ y10 = *(pIn2 + 2U);
+ y11 = *(pIn2 + 3U);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x20 *y10;
+ acc0 += (q31_t) x21 *y11;
+ acc2 += (q31_t) x10 *y10;
+ acc2 += (q31_t) x11 *y11;
+ acc1 += (q31_t) x21 *y10;
+ acc1 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *(pScr1 + 2);
+ x21 = *(pScr1 + 3);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x11 *y10;
+ acc3 += (q31_t) x20 *y11;
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = __SSAT((acc0 >> 15), 16);
+ *pOut++ = __SSAT((acc1 >> 15), 16);
+ *pOut++ = __SSAT((acc2 >> 15), 16);
+ *pOut++ = __SSAT((acc3 >> 15), 16);
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = numPoints & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read two samples from smaller buffer */
+ y10 = *pIn2++;
+ y11 = *pIn2++;
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
new file mode 100644
index 0000000..0d4486a
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
@@ -0,0 +1,1494 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_fast_q15.c
+ * Description: Fast Q15 Partial convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
+ */
+
+
+arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0;
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >=srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+ (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2 - 1U;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = ((uint32_t) blockSize2 >> 2U);
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px+1);
+ px+= 2U;
+
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLADX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px+1);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLADX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLADX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLADX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLADX(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px+2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px+3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLADX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+
+ c0 = *(py-1);
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px+2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ = __PKHBT(acc0 >> 15, acc1 >> 15, 16);
+ *__SIMD32(pOut)++ = __PKHBT(acc2 >> 15, acc3 >> 15, 16);
+
+#else
+
+ *__SIMD32(pOut)++ = __PKHBT(acc1 >> 15, acc0 >> 15, 16);
+ *__SIMD32(pOut)++ = __PKHBT(acc3 >> 15, acc2 >> 15, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = count >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
+ * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
+ * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = __SMLAD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#else
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0;
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+ q15_t a, b;
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >=srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex;
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = ((int32_t) check - blockSize3) -
+ (blockSize1 + (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ py++;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2 - 1U;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = ((uint32_t) blockSize2 >> 2U);
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1] samples */
+ a = *px++;
+ b = *px++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *px;
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *px;
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ a = *py;
+ b = *(py+1);
+ py -= 2;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLADX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x2 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(b, a, 16);
+
+#else
+
+ x2 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLADX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLADX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ a = *py;
+ b = *(py+1);
+ py -= 2;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLADX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLADX(x3, c0, acc1);
+
+ /* Read x[4], x[5], x[6] */
+ a = *(px + 2);
+ b = *(px + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLADX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ a = *px;
+ b = *(px+1);
+ px++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ a = *py;
+ b = *(py+1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ a = *py;
+ b = *(py+1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x0, c0, acc0);
+ acc1 = __SMLADX(x1, c0, acc1);
+ acc2 = __SMLADX(x3, c0, acc2);
+ acc3 = __SMLADX(x2, c0, acc3);
+
+ /* Read y[srcBLen - 7] */
+ c0 = *(py-1);
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ a = *(px+2);
+ b = *(px+3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);;
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = (q15_t)(acc0 >> 15);
+ *pOut++ = (q15_t)(acc1 >> 15);
+ *pOut++ = (q15_t)(acc2 >> 15);
+ *pOut++ = (q15_t)(acc3 >> 15);
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = count >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ py++;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ sum += ((q31_t) * px++ * *py--);
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (sum >> 15);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q31.c
new file mode 100644
index 0000000..e845947
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q31.c
@@ -0,0 +1,620 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_fast_q31.c
+ * Description: Fast Q31 Partial convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * \par
+ * See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
+ */
+
+arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q31_t x0, x1, x2, x3, c0;
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+ (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first loop starts here */
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[1] * y[srcBLen - 2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[2] * y[srcBLen - 3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* x[3] * y[srcBLen - 4] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2 */
+ blkCnt = ((uint32_t) blockSize2 >> 2U);
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+
+ /* acc3 += x[3] * y[srcBLen - 1] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py--);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc3 += x[4] * y[srcBLen - 2] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc3 += x[5] * y[srcBLen - 2] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read y[srcBLen - 4] sample */
+ c0 = *(py--);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[srcBLen - 4] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc1 += x[4] * y[srcBLen - 4] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc2 += x[5] * y[srcBLen - 4] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc3 += x[6] * y[srcBLen - 4] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (acc0 << 1);
+ *pOut++ = (q31_t) (acc1 << 1);
+ *pOut++ = (q31_t) (acc2 << 1);
+ *pOut++ = (q31_t) (acc3 << 1);
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py--))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum << 1;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q15.c
new file mode 100644
index 0000000..78dd548
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q15.c
@@ -0,0 +1,753 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_opt_q15.c
+ * Description: Partial convolution of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, state buffers should be aligned by 32-bit
+ *
+ * Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ *
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q63_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
+ q31_t y1, y2; /* State variables */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ arm_status status; /* Status variable */
+ uint32_t tapCnt; /* loop count */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr1, srcALen);
+
+ /* Update pointers */
+ pScr1 += srcALen;
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ pScratch1 += firstIndex;
+
+ pOut = pDst + firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ /* multiply and accumlate */
+ acc0 = __SMLALD(x1, y1, acc0);
+ acc2 = __SMLALD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLALDX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = _SIMD32_OFFSET(pScr1);
+
+ /* multiply and accumlate */
+ acc0 = __SMLALD(x2, y2, acc0);
+ acc2 = __SMLALD(x1, y2, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y1, acc3);
+ acc1 = __SMLALDX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr1 + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y2, acc3);
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = numPoints & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read two samples from smaller buffer */
+ y1 = *__SIMD32(pIn2)++;
+
+ acc0 = __SMLALD(x1, y1, acc0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#else
+
+arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q63_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ arm_status status; /* Status variable */
+ uint32_t tapCnt; /* loop count */
+ q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */
+ q15_t y10, y11; /* Temporary variables to hold srcB buffer */
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ pScratch1 += firstIndex;
+
+ pOut = pDst + firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *pScr1++;
+ x21 = *pScr1++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read two samples from smaller buffer */
+ y10 = *pIn2;
+ y11 = *(pIn2 + 1U);
+
+ /* multiply and accumlate */
+ acc0 += (q63_t) x10 *y10;
+ acc0 += (q63_t) x11 *y11;
+ acc2 += (q63_t) x20 *y10;
+ acc2 += (q63_t) x21 *y11;
+
+ /* multiply and accumlate */
+ acc1 += (q63_t) x11 *y10;
+ acc1 += (q63_t) x20 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1;
+ x11 = *(pScr1 + 1U);
+
+ /* multiply and accumlate */
+ acc3 += (q63_t) x21 *y10;
+ acc3 += (q63_t) x10 *y11;
+
+ /* Read next two samples from scratch2 buffer */
+ y10 = *(pIn2 + 2U);
+ y11 = *(pIn2 + 3U);
+
+ /* multiply and accumlate */
+ acc0 += (q63_t) x20 *y10;
+ acc0 += (q63_t) x21 *y11;
+ acc2 += (q63_t) x10 *y10;
+ acc2 += (q63_t) x11 *y11;
+ acc1 += (q63_t) x21 *y10;
+ acc1 += (q63_t) x10 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *(pScr1 + 2);
+ x21 = *(pScr1 + 3);
+
+ /* multiply and accumlate */
+ acc3 += (q63_t) x11 *y10;
+ acc3 += (q63_t) x20 *y11;
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = __SSAT((acc0 >> 15), 16);
+ *pOut++ = __SSAT((acc1 >> 15), 16);
+ *pOut++ = __SSAT((acc2 >> 15), 16);
+ *pOut++ = __SSAT((acc3 >> 15), 16);
+
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = numPoints & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read two samples from smaller buffer */
+ y10 = *pIn2++;
+ y11 = *pIn2++;
+
+ /* multiply and accumlate */
+ acc0 += (q63_t) x10 *y10;
+ acc0 += (q63_t) x11 *y11;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
new file mode 100644
index 0000000..351c290
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
@@ -0,0 +1,791 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_opt_q7.c
+ * Description: Partial convolution of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ *
+ *
+ */
+
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
+ q15_t x4; /* Temporary input variable */
+ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
+ uint32_t j, k, blkCnt, tapCnt; /* loop counter */
+ q7_t *px; /* Temporary input1 pointer */
+ q15_t *py; /* Temporary input2 pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3, y1; /* Temporary input variables */
+ arm_status status;
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t out0, out1, out2, out3; /* temporary variables */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2;
+
+ /* points to smaller length sequence */
+ px = pIn2 + srcBLen - 1;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = (q7_t *) py;
+
+ pScr2 = py;
+
+ pOut = pDst + firstIndex;
+
+ pScratch1 += firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2 + 2U);
+
+ acc0 = __SMLAD(x2, y1, acc0);
+
+ acc2 = __SMLAD(x1, y1, acc2);
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ x2 = *__SIMD32(pScr1)++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ pScr2 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ out0 = (q7_t) (__SSAT(acc0 >> 7U, 8));
+ out1 = (q7_t) (__SSAT(acc1 >> 7U, 8));
+ out2 = (q7_t) (__SSAT(acc2 >> 7U, 8));
+ out3 = (q7_t) (__SSAT(acc3 >> 7U, 8));
+
+ *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3);
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+ blkCnt = (numPoints) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read two samples from smaller buffer */
+ y1 = *__SIMD32(pScr2)++;
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+
+ }
+
+ return (status);
+
+}
+
+#else
+
+arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
+ q15_t x4; /* Temporary input variable */
+ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
+ uint32_t j, k, blkCnt, tapCnt; /* loop counter */
+ q7_t *px; /* Temporary input1 pointer */
+ q15_t *py; /* Temporary input2 pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ arm_status status;
+ q7_t *pOut = pDst; /* output pointer */
+ q15_t x10, x11, x20, x21; /* Temporary input variables */
+ q15_t y10, y11; /* Temporary input variables */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2;
+
+ /* points to smaller length sequence */
+ px = pIn2 + srcBLen - 1;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = (q7_t *) py;
+
+ pScr2 = py;
+
+ pOut = pDst + firstIndex;
+
+ pScratch1 += firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *pScr1++;
+ x21 = *pScr1++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y10 = *pScr2;
+ y11 = *(pScr2 + 1U);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+ acc2 += (q31_t) x20 *y10;
+ acc2 += (q31_t) x21 *y11;
+
+
+ acc1 += (q31_t) x11 *y10;
+ acc1 += (q31_t) x20 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1;
+ x11 = *(pScr1 + 1U);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x21 *y10;
+ acc3 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch2 buffer */
+ y10 = *(pScr2 + 2U);
+ y11 = *(pScr2 + 3U);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x20 *y10;
+ acc0 += (q31_t) x21 *y11;
+ acc2 += (q31_t) x10 *y10;
+ acc2 += (q31_t) x11 *y11;
+ acc1 += (q31_t) x21 *y10;
+ acc1 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *(pScr1 + 2);
+ x21 = *(pScr1 + 3);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x11 *y10;
+ acc3 += (q31_t) x20 *y11;
+
+ /* update scratch pointers */
+
+ pScr1 += 4U;
+ pScr2 += 4U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc1 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc2 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc3 >> 7U, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+ blkCnt = (numPoints) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read two samples from smaller buffer */
+ y10 = *pScr2++;
+ y11 = *pScr2++;
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+ return (status);
+
+}
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q15.c
new file mode 100644
index 0000000..43d2b35
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q15.c
@@ -0,0 +1,795 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_q15.c
+ * Description: Partial convolution of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ * \par
+ * Refer the function <code>arm_conv_partial_opt_q15()</code> for a faster implementation of this function using scratch buffers.
+ *
+ */
+
+arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+
+
+#if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary input variables */
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+ (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2 - 1U;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px+1);
+ px+= 2U;
+
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLALDX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px+1);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLALDX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLALDX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLALDX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLALDX(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px+2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px+3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLALDX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLALDX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALDX(x1, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+
+ c0 = *(py-1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px+2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x1, c0, acc0);
+ acc1 = __SMLALD(x2, c0, acc1);
+ acc2 = __SMLALDX(x2, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = count >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
+ * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
+ * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q15_t *pIn1 = pSrcA; /* inputA pointer */
+ q15_t *pIn2 = pSrcB; /* inputB pointer */
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+ /* Loop to calculate convolution for output length number of values */
+ for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q31_t) pIn1[j] * (pIn2[i - j]));
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q15_t) __SSAT((sum >> 15U), 16U);
+ }
+ /* set status as ARM_SUCCESS as there are no argument errors */
+ status = ARM_MATH_SUCCESS;
+ }
+ return (status);
+
+#endif /* #if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */
+
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c
new file mode 100644
index 0000000..3a108e0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q31.c
@@ -0,0 +1,616 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_q31.c
+ * Description: Partial convolution of Q31 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * See <code>arm_conv_partial_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q63_t sum, acc0, acc1, acc2; /* Accumulator */
+ q31_t x0, x1, x2, c0;
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
+ arm_status status; /* status of Partial convolution */
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+ (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first loop starts here */
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[1] * y[srcBLen - 2] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[2] * y[srcBLen - 3] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[3] * y[srcBLen - 4] */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blkCnt */
+
+ blkCnt = blockSize2 / 3;
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+
+ /* read x[0], x[1] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+
+ /* Apply loop unrolling and compute 3 MACs simultaneously. */
+ k = srcBLen / 3;
+
+ /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 2 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py);
+
+ /* Read x[2] sample */
+ x2 = *(px);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 += (q63_t) x0 *c0;
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 += (q63_t) x1 *c0;
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 += (q63_t) x2 *c0;
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py - 1U);
+
+ /* Read x[3] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 += (q63_t) x1 *c0;
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 += (q63_t) x2 *c0;
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 += (q63_t) x0 *c0;
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py - 2U);
+
+ /* Read x[4] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 += (q63_t) x2 *c0;
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 += (q63_t) x0 *c0;
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 += (q63_t) x1 *c0;
+
+
+ px += 3U;
+
+ py -= 3U;
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen - (3 * (srcBLen / 3));
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += (q63_t) x0 *c0;
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += (q63_t) x1 *c0;
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += (q63_t) x2 *c0;
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (acc0 >> 31);
+ *pOut++ = (q31_t) (acc1 >> 31);
+ *pOut++ = (q31_t) (acc2 >> 31);
+
+ /* Increment the pointer pIn1 index, count by 3 */
+ count += 3U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 - 3 * (blockSize2 / 3);
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t *pIn1 = pSrcA; /* inputA pointer */
+ q31_t *pIn2 = pSrcB; /* inputB pointer */
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+ /* Loop to calculate convolution for output length number of values */
+ for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q31_t) (sum >> 31U);
+ }
+ /* set status as ARM_SUCCESS as there are no argument errors */
+ status = ARM_MATH_SUCCESS;
+ }
+ return (status);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c
new file mode 100644
index 0000000..cb4c562
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c
@@ -0,0 +1,750 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_partial_q7.c
+ * Description: Partial convolution of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * \par
+ * Refer the function <code>arm_conv_partial_opt_q7()</code> for a faster implementation of this function.
+ *
+ */
+
+arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q7_t *pIn1; /* inputA pointer */
+ q7_t *pIn2; /* inputB pointer */
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t *px; /* Intermediate inputA pointer */
+ q7_t *py; /* Intermediate inputB pointer */
+ q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t input1, input2;
+ q15_t in1, in2;
+ q7_t x0, x1, x2, x3, c0, c1;
+ uint32_t j, k, count, check, blkCnt;
+ int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
+ arm_status status;
+
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Conditions to check which loopCounter holds
+ * the first and last indices of the output samples to be calculated. */
+ check = firstIndex + numPoints;
+ blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
+ blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
+ blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+ blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
+ (int32_t) numPoints) : 0;
+ blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+ (int32_t) firstIndex);
+ blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* Set the output pointer to point to the firstIndex
+ * of the output sample to be calculated. */
+ pOut = pDst + firstIndex;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed.
+ Since the partial convolution starts from from firstIndex
+ Number of Macs to be performed is firstIndex + 1 */
+ count = 1U + firstIndex;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + firstIndex;
+ py = pSrc2;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] , x[1] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 1] , y[srcBLen - 2] */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* x[0] * y[srcBLen - 1] */
+ /* x[1] * y[srcBLen - 2] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* x[2] , x[3] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 3] , y[srcBLen - 4] */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* x[2] * y[srcBLen - 3] */
+ /* x[3] * y[srcBLen - 4] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = ++pSrc2;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1;
+ }
+ else
+ {
+ px = pIn1;
+ }
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = ((uint32_t) blockSize2 >> 2U);
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+ /* Read y[srcBLen - 2] sample */
+ c1 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* x[0] and x[1] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 1] and y[srcBLen - 2] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[1] and x[2] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+ /* Read y[srcBLen - 4] sample */
+ c1 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 3] and y[srcBLen - 4] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[4] and x[5] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* x[5] and x[6] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += ((q31_t) x0 * c0);
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += ((q31_t) x1 * c0);
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += ((q31_t) x2 * c0);
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 += ((q31_t) x3 * c0);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7, 8));
+ *pOut++ = (q7_t) (__SSAT(acc1 >> 7, 8));
+ *pOut++ = (q7_t) (__SSAT(acc2 >> 7, 8));
+ *pOut++ = (q7_t) (__SSAT(acc3 >> 7, 8));
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = (uint32_t) blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = (uint32_t) blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
+ {
+ px = pIn1 + firstIndex - srcBLen + 1 + count;
+ }
+ else
+ {
+ px = pIn1 + count;
+ }
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q7_t *pIn1 = pSrcA; /* inputA pointer */
+ q7_t *pIn2 = pSrcB; /* inputB pointer */
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+ arm_status status; /* status of Partial convolution */
+
+ /* Check for range of output samples to be calculated */
+ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
+ {
+ /* Set status as ARM_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+ /* Loop to calculate convolution for output length number of values */
+ for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q15_t) pIn1[j] * (pIn2[i - j]));
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q7_t) __SSAT((sum >> 7U), 8U);
+ }
+ /* set status as ARM_SUCCESS as there are no argument errors */
+ status = ARM_MATH_SUCCESS;
+ }
+ return (status);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of PartialConv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c
new file mode 100644
index 0000000..c6721e0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c
@@ -0,0 +1,722 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_q15.c
+ * Description: Convolution of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * This approach provides 33 guard bits and there is no risk of overflow.
+ * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ * \par
+ * Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
+ *
+ */
+
+void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+
+#if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + (count - 1U);
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px+1);
+ px+= 2U;
+
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLALDX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px+1);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLALDX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLALDX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLALDX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLALDX(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px+2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px+3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLALDX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLALDX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALDX(x1, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+
+ c0 = *(py-1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px+2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x1, c0, acc0);
+ acc1 = __SMLALD(x2, c0, acc1);
+ acc2 = __SMLALDX(x2, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ blockSize3 = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = blockSize3 >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
+ * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
+ * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ q15_t *pIn1 = pSrcA; /* input pointer */
+ q15_t *pIn2 = pSrcB; /* coefficient pointer */
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < (srcALen + srcBLen - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t) pIn1[j] * (pIn2[i - j]);
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q15_t) __SSAT((sum >> 15U), 16U);
+ }
+
+#endif /* #if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q31.c
new file mode 100644
index 0000000..14e5f86
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q31.c
@@ -0,0 +1,553 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_q31.c
+ * Description: Convolution of Q31 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q63_t sum; /* Accumulator */
+ q63_t acc0, acc1, acc2; /* Accumulator */
+ q31_t x0, x1, x2, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (q31_t *) pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = (q31_t *) pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[1] * y[srcBLen - 2] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[2] * y[srcBLen - 3] */
+ sum += (q63_t) * px++ * (*py--);
+ /* x[3] * y[srcBLen - 4] */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll by 3 */
+ blkCnt = blockSize2 / 3;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+
+ /* Apply loop unrolling and compute 3 MACs simultaneously. */
+ k = srcBLen / 3;
+
+ /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 2 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py);
+
+ /* Read x[3] sample */
+ x2 = *(px);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 += ((q63_t) x0 * c0);
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 += ((q63_t) x1 * c0);
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py - 1U);
+
+ /* Read x[4] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 += ((q63_t) x1 * c0);
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 += ((q63_t) x2 * c0);
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 += ((q63_t) x0 * c0);
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py - 2U);
+
+ /* Read x[5] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 += ((q63_t) x2 * c0);
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 += ((q63_t) x0 * c0);
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 += ((q63_t) x1 * c0);
+
+ /* update scratch pointers */
+ px += 3U;
+ py -= 3U;
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen - (3 * (srcBLen / 3));
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += ((q63_t) x0 * c0);
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += ((q63_t) x1 * c0);
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut++ = (q31_t) (acc0 >> 31);
+ *pOut++ = (q31_t) (acc1 >> 31);
+ *pOut++ = (q31_t) (acc2 >> 31);
+
+ /* Increment the pointer pIn1 index, count by 3 */
+ count += 3U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 - 3 * (blockSize2 / 3);
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum += (q63_t) * px++ * (*py--);
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum += (q63_t) * px++ * (*py--);
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum += (q63_t) * px++ * (*py--);
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q31_t) (sum >> 31);
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t *pIn1 = pSrcA; /* input pointer */
+ q31_t *pIn2 = pSrcB; /* coefficient pointer */
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < (srcALen + srcBLen - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q31_t) (sum >> 31U);
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q7.c
new file mode 100644
index 0000000..6c4dd3c
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q7.c
@@ -0,0 +1,678 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_q7.c
+ * Description: Convolution of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
+ * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
+ *
+ * \par
+ * Refer the function <code>arm_conv_opt_q7()</code> for a faster implementation of this function.
+ *
+ */
+
+void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q7_t *pIn1; /* inputA pointer */
+ q7_t *pIn2; /* inputB pointer */
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t *px; /* Intermediate inputA pointer */
+ q7_t *py; /* Intermediate inputB pointer */
+ q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q7_t x0, x1, x2, x3, c0, c1; /* Temporary variables to hold state and coefficient values */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t input1, input2; /* Temporary input variables */
+ q15_t in1, in2; /* Temporary input variables */
+ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = (srcALen - srcBLen) + 1U;
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] , x[1] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* y[srcBLen - 1] , y[srcBLen - 2] */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* x[0] * y[srcBLen - 1] */
+ /* x[1] * y[srcBLen - 2] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* x[2] , x[3] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* y[srcBLen - 3] , y[srcBLen - 4] */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* x[2] * y[srcBLen - 3] */
+ /* x[3] * y[srcBLen - 4] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q15_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+ /* Read y[srcBLen - 2] sample */
+ c1 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* x[0] and x[1] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* y[srcBLen - 1] and y[srcBLen - 2] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[1] and x[2] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+ /* Read y[srcBLen - 4] sample */
+ c1 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* y[srcBLen - 3] and y[srcBLen - 4] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[4] and x[5] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* x[5] and x[6] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += ((q15_t) x0 * c0);
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += ((q15_t) x1 * c0);
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += ((q15_t) x2 * c0);
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 += ((q15_t) x3 * c0);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc1 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc2 >> 7U, 8));
+ *pOut++ = (q7_t) (__SSAT(acc3 >> 7U, 8));
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q15_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8));
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q15_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8));
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = pIn1 + (srcALen - (srcBLen - 1U));
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
+ in1 = (q15_t) * py--;
+ in2 = (q15_t) * py--;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U);
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q15_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q7_t *pIn1 = pSrcA; /* input pointer */
+ q7_t *pIn2 = pSrcB; /* coefficient pointer */
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < (srcALen + srcBLen - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q15_t) pIn1[j] * (pIn2[i - j]);
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q7_t) __SSAT((sum >> 7U), 8U);
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Conv group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_f32.c
new file mode 100644
index 0000000..9451887
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_f32.c
@@ -0,0 +1,727 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_f32.c
+ * Description: Correlation of floating-point sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup Corr Correlation
+ *
+ * Correlation is a mathematical operation that is similar to convolution.
+ * As with convolution, correlation uses two signals to produce a third signal.
+ * The underlying algorithms in correlation and convolution are identical except that one of the inputs is flipped in convolution.
+ * Correlation is commonly used to measure the similarity between two signals.
+ * It has applications in pattern recognition, cryptanalysis, and searching.
+ * The CMSIS library provides correlation functions for Q7, Q15, Q31 and floating-point data types.
+ * Fast versions of the Q15 and Q31 functions are also provided.
+ *
+ * \par Algorithm
+ * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
+ * The convolution of the two signals is denoted by
+ * <pre>
+ * c[n] = a[n] * b[n]
+ * </pre>
+ * In correlation, one of the signals is flipped in time
+ * <pre>
+ * c[n] = a[n] * b[-n]
+ * </pre>
+ *
+ * \par
+ * and this is mathematically defined as
+ * \image html CorrelateEquation.gif
+ * \par
+ * The <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
+ * The result <code>c[n]</code> is of length <code>2 * max(srcALen, srcBLen) - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., (2 * max(srcALen, srcBLen) - 2)</code>.
+ * The output result is written to <code>pDst</code> and the calling function must allocate <code>2 * max(srcALen, srcBLen) - 1</code> words for the result.
+ *
+ * <b>Note</b>
+ * \par
+ * The <code>pDst</code> should be initialized to all zeros before being used.
+ *
+ * <b>Fixed-Point Behavior</b>
+ * \par
+ * Correlation requires summing up a large number of intermediate products.
+ * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
+ * Refer to the function specific documentation below for further details of the particular algorithm used.
+ *
+ *
+ * <b>Fast Versions</b>
+ *
+ * \par
+ * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of correlate and the design requires
+ * the input signals should be scaled down to avoid intermediate overflows.
+ *
+ *
+ * <b>Opt Versions</b>
+ *
+ * \par
+ * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
+ * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of correlate
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+/**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ float32_t *pIn1; /* inputA pointer */
+ float32_t *pIn2; /* inputB pointer */
+ float32_t *pOut = pDst; /* output pointer */
+ float32_t *px; /* Intermediate inputA pointer */
+ float32_t *py; /* Intermediate inputB pointer */
+ float32_t *pSrc1; /* Intermediate pointers */
+ float32_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ float32_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counters */
+ int32_t inc = 1; /* Destination address modifier */
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we assume zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding has to be done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ //while (j > 0U)
+ //{
+ // /* Zero is stored in the destination buffer */
+ // *pOut++ = 0.0f;
+
+ // /* Decrement the loop counter */
+ // j--;
+ //}
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] */
+ sum += *px++ * *py++;
+ /* x[1] * y[srcBLen - 3] */
+ sum += *px++ * *py++;
+ /* x[2] * y[srcBLen - 2] */
+ sum += *px++ * *py++;
+ /* x[3] * y[srcBLen - 1] */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ /* x[0] * y[srcBLen - 1] */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[0] sample */
+ c0 = *(py++);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[0] */
+ acc0 += x0 * c0;
+ /* acc1 += x[1] * y[0] */
+ acc1 += x1 * c0;
+ /* acc2 += x[2] * y[0] */
+ acc2 += x2 * c0;
+ /* acc3 += x[3] * y[0] */
+ acc3 += x3 * c0;
+
+ /* Read y[1] sample */
+ c0 = *(py++);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[1] */
+ acc0 += x1 * c0;
+ /* acc1 += x[2] * y[1] */
+ acc1 += x2 * c0;
+ /* acc2 += x[3] * y[1] */
+ acc2 += x3 * c0;
+ /* acc3 += x[4] * y[1] */
+ acc3 += x0 * c0;
+
+ /* Read y[2] sample */
+ c0 = *(py++);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[2] */
+ acc0 += x2 * c0;
+ /* acc1 += x[3] * y[2] */
+ acc1 += x3 * c0;
+ /* acc2 += x[4] * y[2] */
+ acc2 += x0 * c0;
+ /* acc3 += x[5] * y[2] */
+ acc3 += x1 * c0;
+
+ /* Read y[3] sample */
+ c0 = *(py++);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[3] */
+ acc0 += x3 * c0;
+ /* acc1 += x[4] * y[3] */
+ acc1 += x0 * c0;
+ /* acc2 += x[5] * y[3] */
+ acc2 += x1 * c0;
+ /* acc3 += x[6] * y[3] */
+ acc3 += x2 * c0;
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[4] sample */
+ c0 = *(py++);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[4] */
+ acc0 += x0 * c0;
+ /* acc1 += x[5] * y[4] */
+ acc1 += x1 * c0;
+ /* acc2 += x[6] * y[4] */
+ acc2 += x2 * c0;
+ /* acc3 += x[7] * y[4] */
+ acc3 += x3 * c0;
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = acc0;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = acc1;
+ pOut += inc;
+
+ *pOut = acc2;
+ pOut += inc;
+
+ *pOut = acc3;
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py++;
+ sum += *px++ * *py++;
+ sum += *px++ * *py++;
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = pIn1 + (srcALen - (srcBLen - 1U));
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] */
+ sum += *px++ * *py++;
+ /* sum += x[srcALen - srcBLen + 3] * y[2] */
+ sum += *px++ * *py++;
+ /* sum += x[srcALen - srcBLen + 2] * y[1] */
+ sum += *px++ * *py++;
+ /* sum += x[srcALen - srcBLen + 1] * y[0] */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ float32_t sum; /* Accumulator */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and a varaible, inv is set to 1 */
+ /* If lengths are not equal then zero pad has to be done to make the two
+ * inputs of same length. But to improve the performance, we assume zeroes
+ * in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * starting of the output buffer */
+ /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * ending of the output buffer */
+ /* Once the zero padding is done the remaining of the output is calcualted
+ * using convolution but with the shorter signal time shifted. */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pIn1[j] * pIn2[-((int32_t) i - j)];
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = sum;
+ else
+ *pDst++ = sum;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_opt_q15.c
new file mode 100644
index 0000000..baebc49
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_opt_q15.c
@@ -0,0 +1,500 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_fast_opt_q15.c
+ * Description: Fast Q15 Correlation
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ *
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch buffers should be aligned by 32-bit
+ *
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down one of the inputs by 1/min(srcALen, srcBLen) to avoid overflow since a
+ * maximum of min(srcALen, srcBLen) number of additions is carried internally.
+ * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_correlate_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
+ */
+
+void arm_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch)
+{
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *py; /* Intermediate inputB pointer */
+ q31_t x1, x2, x3; /* temporary variables for holding input and coefficient values */
+ uint32_t j, blkCnt, outBlockSize; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+ uint32_t tapCnt;
+ q31_t y1, y2;
+ q15_t *pScr; /* Intermediate pointers */
+ q15_t *pOut = pDst; /* output pointer */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t a, b;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ pScr = pScratch;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr += (srcBLen - 1U);
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr, srcALen);
+
+ /* Update pointers */
+ pScr += srcALen;
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ j = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ j = srcALen % 0x4U;
+
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr += (srcBLen - 1U);
+
+#else
+
+/* Apply loop unrolling and do 4 Copies simultaneously. */
+ j = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr++ = 0;
+ *pScr++ = 0;
+ *pScr++ = 0;
+ *pScr++ = 0;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ j = (srcBLen - 1U) % 0x4U;
+
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr++ = 0;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Temporary pointer for scratch2 */
+ py = pIn2;
+
+
+ /* Actual correlation process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr = pScratch;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read four samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr)++;
+
+ /* Read next four samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ acc2 = __SMLAD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ x1 = _SIMD32_OFFSET(pScr);
+
+ acc0 = __SMLAD(x2, y2, acc0);
+
+ acc2 = __SMLAD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+#else
+
+ /* Read four samples from smaller buffer */
+ a = *pIn2;
+ b = *(pIn2 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ y1 = __PKHBT(a, b, 16);
+#else
+ y1 = __PKHBT(b, a, 16);
+#endif
+
+ a = *(pIn2 + 2);
+ b = *(pIn2 + 3);
+#ifndef ARM_MATH_BIG_ENDIAN
+ y2 = __PKHBT(a, b, 16);
+#else
+ y2 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ acc2 = __SMLAD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ a = *pScr;
+ b = *(pScr + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(a, b, 16);
+#else
+ x1 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x2, y2, acc0);
+
+ acc2 = __SMLAD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ a = *(pScr + 2);
+ b = *(pScr + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x2 = __PKHBT(a, b, 16);
+#else
+ x2 = __PKHBT(b, a, 16);
+#endif
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ pIn2 += 4U;
+
+ pScr += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr++ * *pIn2);
+ acc1 += (*pScr++ * *pIn2);
+ acc2 += (*pScr++ * *pIn2);
+ acc3 += (*pScr++ * *pIn2++);
+
+ pScr -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut = (__SSAT(acc0 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc1 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc2 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc3 >> 15U, 16));
+ pOut += inc;
+
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate correlation for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr = pScratch;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ acc0 += (*pScr++ * *pIn2++);
+ acc0 += (*pScr++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+
+ *pOut = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ pOut += inc;
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch += 1U;
+
+ }
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c
new file mode 100644
index 0000000..7b676d0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c
@@ -0,0 +1,1307 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_fast_q15.c
+ * Description: Fast Q15 Correlation
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down one of the inputs by 1/min(srcALen, srcBLen) to avoid overflow since a
+ * maximum of min(srcALen, srcBLen) number of additions is carried internally.
+ * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_correlate_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
+ */
+
+void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first loop starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
+ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ /* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */
+ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum = __SMLAD(*px++, *py++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px + 1);
+ px += 2U;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the first two inputB samples using SIMD:
+ * y[0] and y[1] */
+ c0 = *__SIMD32(py)++;
+
+ /* acc0 += x[0] * y[0] + x[1] * y[1] */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[0] + x[2] * y[1] */
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px + 1);
+
+ /* acc2 += x[2] * y[0] + x[3] * y[1] */
+ acc2 = __SMLAD(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[0] + x[4] * y[1] */
+ acc3 = __SMLAD(x3, c0, acc3);
+
+ /* Read y[2] and y[3] */
+ c0 = *__SIMD32(py)++;
+
+ /* acc0 += x[2] * y[2] + x[3] * y[3] */
+ acc0 = __SMLAD(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[2] + x[4] * y[3] */
+ acc1 = __SMLAD(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px + 2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px + 3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[2] + x[5] * y[3] */
+ acc2 = __SMLAD(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[2] + x[6] * y[3] */
+ acc3 = __SMLAD(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[4] */
+ c0 = *py;
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[4], y[5] */
+ c0 = *__SIMD32(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px + 1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLAD(x3, c0, acc2);
+ acc3 = __SMLAD(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[4], y[5] */
+ c0 = *__SIMD32(py)++;
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px + 1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLAD(x3, c0, acc2);
+ acc3 = __SMLAD(x2, c0, acc3);
+
+ c0 = (*py);
+ /* Read y[6] */
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px + 2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (acc0 >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q15_t) (acc1 >> 15);
+ pOut += inc;
+
+ *pOut = (q15_t) (acc2 >> 15);
+ pOut += inc;
+
+ *pOut = (q15_t) (acc3 >> 15);
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */
+ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ /* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */
+ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(*px++, *py++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+ q15_t a, b;
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first loop starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 2U;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the first two inputB samples using SIMD:
+ * y[0] and y[1] */
+ a = *py;
+ b = *(py + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[0] * y[0] + x[1] * y[1] */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[0] + x[2] * y[1] */
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Read x[2], x[3], x[4] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x2 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(b, a, 16);
+
+#else
+
+ x2 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x3 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc2 += x[2] * y[0] + x[3] * y[1] */
+ acc2 = __SMLAD(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[0] + x[4] * y[1] */
+ acc3 = __SMLAD(x3, c0, acc3);
+
+ /* Read y[2] and y[3] */
+ a = *(py + 2);
+ b = *(py + 3);
+
+ py += 4U;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* acc0 += x[2] * y[2] + x[3] * y[3] */
+ acc0 = __SMLAD(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[2] + x[4] * y[3] */
+ acc1 = __SMLAD(x3, c0, acc1);
+
+ /* Read x[4], x[5], x[6] */
+ a = *(px + 2);
+ b = *(px + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x0 = __PKHBT(a, b, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(b, a, 16);
+
+#else
+
+ x0 = __PKHBT(b, a, 16);
+ a = *(px + 4);
+ x1 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 4U;
+
+ /* acc2 += x[4] * y[2] + x[5] * y[3] */
+ acc2 = __SMLAD(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[2] + x[6] * y[3] */
+ acc3 = __SMLAD(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[4] */
+ c0 = *py;
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7] */
+ a = *px;
+ b = *(px + 1);
+
+ px++;;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLADX(x1, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[4], y[5] */
+ a = *py;
+ b = *(py + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLAD(x3, c0, acc2);
+ acc3 = __SMLAD(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[4], y[5] */
+ a = *py;
+ b = *(py + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ c0 = __PKHBT(a, b, 16);
+
+#else
+
+ c0 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ py += 2U;
+
+ /* Read x[7], x[8], x[9] */
+ a = *px;
+ b = *(px + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(b, a, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+ a = *(px + 2);
+ x2 = __PKHBT(a, b, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+ acc2 = __SMLAD(x3, c0, acc2);
+ acc3 = __SMLAD(x2, c0, acc3);
+
+ c0 = (*py);
+ /* Read y[6] */
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+
+ /* Read x[10] */
+ b = *(px + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ x3 = __PKHBT(a, b, 16);
+
+#else
+
+ x3 = __PKHBT(b, a, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLADX(x1, c0, acc0);
+ acc1 = __SMLAD(x2, c0, acc1);
+ acc2 = __SMLADX(x2, c0, acc2);
+ acc3 = __SMLADX(x3, c0, acc3);
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (acc0 >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q15_t) (acc1 >> 15);
+ pOut += inc;
+
+ *pOut = (q15_t) (acc2 >> 15);
+ pOut += inc;
+
+ *pOut = (q15_t) (acc3 >> 15);
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q31_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (sum >> 15);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c
new file mode 100644
index 0000000..53373ac
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q31.c
@@ -0,0 +1,600 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_fast_q31.c
+ * Description: Fast Q31 Correlation
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ * These intermediate results are accumulated in a 32-bit register in 2.30 format.
+ * Finally, the accumulator is saturated and converted to a 1.31 result.
+ *
+ * \par
+ * The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signals must be scaled down.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
+ * maximum of min(srcALen, srcBLen) number of additions is carried internally.
+ *
+ * \par
+ * See <code>arm_correlate_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
+ */
+
+void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1; /* Intermediate pointers */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* x[1] * y[srcBLen - 3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* x[2] * y[srcBLen - 2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* x[3] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum << 1;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[0] sample */
+ c0 = *(py++);
+
+ /* Read x[3] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[0] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc1 += x[1] * y[0] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc2 += x[2] * y[0] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc3 += x[3] * y[0] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Read y[1] sample */
+ c0 = *(py++);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[1] * y[1] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc1 += x[2] * y[1] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc2 += x[3] * y[1] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc3 += x[4] * y[1] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read y[2] sample */
+ c0 = *(py++);
+
+ /* Read x[5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[2] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc1 += x[3] * y[2] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc2 += x[4] * y[2] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc3 += x[5] * y[2] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read y[3] sample */
+ c0 = *(py++);
+
+ /* Read x[6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[3] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
+ /* acc1 += x[4] * y[3] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc2 += x[5] * y[3] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc3 += x[6] * y[3] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[4] sample */
+ c0 = *(py++);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[4] */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ /* acc1 += x[5] * y[4] */
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+ /* acc2 += x[6] * y[4] */
+ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
+ /* acc3 += x[7] * y[4] */
+ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (acc0 << 1);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q31_t) (acc1 << 1);
+ pOut += inc;
+
+ *pOut = (q31_t) (acc2 << 1);
+ pOut += inc;
+
+ *pOut = (q31_t) (acc3 << 1);
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum << 1;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum << 1;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = ((pIn1 + srcALen) - srcBLen) + 1U;
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* sum += x[srcALen - srcBLen + 3] * y[2] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* sum += x[srcALen - srcBLen + 2] * y[1] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+ /* sum += x[srcALen - srcBLen + 1] * y[0] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) * px++ * (*py++))) >> 32);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = sum << 1;
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q15.c
new file mode 100644
index 0000000..c021b05
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q15.c
@@ -0,0 +1,501 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_opt_q15.c
+ * Description: Correlation of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch buffers should be aligned by 32-bit
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * This approach provides 33 guard bits and there is no risk of overflow.
+ * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ *
+ */
+
+
+void arm_correlate_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch)
+{
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q63_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *py; /* Intermediate inputB pointer */
+ q31_t x1, x2, x3; /* temporary variables for holding input1 and input2 values */
+ uint32_t j, blkCnt, outBlockSize; /* loop counter */
+ int32_t inc = 1; /* output pointer increment */
+ uint32_t tapCnt;
+ q31_t y1, y2;
+ q15_t *pScr; /* Intermediate pointers */
+ q15_t *pOut = pDst; /* output pointer */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t a, b;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ pScr = pScratch;
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr += (srcBLen - 1U);
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr, srcALen);
+
+ /* Update pointers */
+ //pIn1 += srcALen;
+ pScr += srcALen;
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ j = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+ *pScr++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ j = srcALen % 0x4U;
+
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr += (srcBLen - 1U);
+
+#else
+
+/* Apply loop unrolling and do 4 Copies simultaneously. */
+ j = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr++ = 0;
+ *pScr++ = 0;
+ *pScr++ = 0;
+ *pScr++ = 0;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ j = (srcBLen - 1U) % 0x4U;
+
+ while (j > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr++ = 0;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Temporary pointer for scratch2 */
+ py = pIn2;
+
+
+ /* Actual correlation process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr = pScratch;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read four samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr)++;
+
+ /* Read next four samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ acc0 = __SMLALD(x1, y1, acc0);
+
+ acc2 = __SMLALD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLALDX(x3, y1, acc1);
+
+ x1 = _SIMD32_OFFSET(pScr);
+
+ acc0 = __SMLALD(x2, y2, acc0);
+
+ acc2 = __SMLALD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y1, acc3);
+
+ acc1 = __SMLALDX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y2, acc3);
+
+#else
+
+ /* Read four samples from smaller buffer */
+ a = *pIn2;
+ b = *(pIn2 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ y1 = __PKHBT(a, b, 16);
+#else
+ y1 = __PKHBT(b, a, 16);
+#endif
+
+ a = *(pIn2 + 2);
+ b = *(pIn2 + 3);
+#ifndef ARM_MATH_BIG_ENDIAN
+ y2 = __PKHBT(a, b, 16);
+#else
+ y2 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLALD(x1, y1, acc0);
+
+ acc2 = __SMLALD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLALDX(x3, y1, acc1);
+
+ a = *pScr;
+ b = *(pScr + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(a, b, 16);
+#else
+ x1 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLALD(x2, y2, acc0);
+
+ acc2 = __SMLALD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y1, acc3);
+
+ acc1 = __SMLALDX(x3, y2, acc1);
+
+ a = *(pScr + 2);
+ b = *(pScr + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x2 = __PKHBT(a, b, 16);
+#else
+ x2 = __PKHBT(b, a, 16);
+#endif
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLALDX(x3, y2, acc3);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ pIn2 += 4U;
+
+ pScr += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr++ * *pIn2);
+ acc1 += (*pScr++ * *pIn2);
+ acc2 += (*pScr++ * *pIn2);
+ acc3 += (*pScr++ * *pIn2++);
+
+ pScr -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+ *pOut = (__SSAT(acc0 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc1 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc2 >> 15U, 16));
+ pOut += inc;
+ *pOut = (__SSAT(acc3 >> 15U, 16));
+ pOut += inc;
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate correlation for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr = pScratch;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ acc0 += (*pScr++ * *pIn2++);
+ acc0 += (*pScr++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ pOut += inc;
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch += 1U;
+
+ }
+
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q7.c
new file mode 100644
index 0000000..dbffd5d
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_opt_q7.c
@@ -0,0 +1,452 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_opt_q7.c
+ * Description: Correlation of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ *
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
+ * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and saturated to 1.7 format.
+ *
+ *
+ */
+
+
+
+void arm_correlate_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q7_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch */
+ q7_t *pIn1; /* inputA pointer */
+ q7_t *pIn2; /* inputB pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ uint32_t j, k = 0U, blkCnt; /* loop counter */
+ int32_t inc = 1; /* output pointer increment */
+ uint32_t outBlockSize; /* loop counter */
+ q15_t x4; /* Temporary input variable */
+ uint32_t tapCnt; /* loop counter */
+ q31_t x1, x2, x3, y1; /* Temporary input variables */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+
+ /* Copy (srcBLen) samples in scratch buffer */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn2++;
+ *pScr2++ = x4;
+ x4 = (q15_t) * pIn2++;
+ *pScr2++ = x4;
+ x4 = (q15_t) * pIn2++;
+ *pScr2++ = x4;
+ x4 = (q15_t) * pIn2++;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn2++;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Fill (srcBLen - 1U) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+#else
+
+/* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Temporary pointer for second sequence */
+ py = pScratch2;
+
+ /* Initialization of pScr2 pointer */
+ pScr2 = pScratch2;
+
+ /* Actual correlation process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2 + 2U);
+
+ acc0 = __SMLAD(x2, y1, acc0);
+
+ acc2 = __SMLAD(x1, y1, acc2);
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ x2 = *__SIMD32(pScr1)++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ pScr2 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(acc0 >> 7U, 8));
+ pOut += inc;
+ *pOut = (q7_t) (__SSAT(acc1 >> 7U, 8));
+ pOut += inc;
+ *pOut = (q7_t) (__SSAT(acc2 >> 7U, 8));
+ pOut += inc;
+ *pOut = (q7_t) (__SSAT(acc3 >> 7U, 8));
+ pOut += inc;
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate correlation for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+ acc0 += (*pScr1++ * *pScr2++);
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(acc0 >> 7U, 8));
+
+ pOut += inc;
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c
new file mode 100644
index 0000000..fdff6db
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q15.c
@@ -0,0 +1,707 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_q15.c
+ * Description: Correlation of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * This approach provides 33 guard bits and there is no risk of overflow.
+ * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ * \par
+ * Refer the function <code>arm_correlate_opt_q15()</code> for a faster implementation of this function using scratch buffers.
+ *
+ */
+
+void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+
+#if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q63_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first loop starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
+ sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ /* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */
+ sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum = __SMLALD(*px++, *py++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT((sum >> 15), 16));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px + 1);
+ px += 2U;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the first two inputB samples using SIMD:
+ * y[0] and y[1] */
+ c0 = *__SIMD32(py)++;
+
+ /* acc0 += x[0] * y[0] + x[1] * y[1] */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[0] + x[2] * y[1] */
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px + 1);
+
+ /* acc2 += x[2] * y[0] + x[3] * y[1] */
+ acc2 = __SMLALD(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[0] + x[4] * y[1] */
+ acc3 = __SMLALD(x3, c0, acc3);
+
+ /* Read y[2] and y[3] */
+ c0 = *__SIMD32(py)++;
+
+ /* acc0 += x[2] * y[2] + x[3] * y[3] */
+ acc0 = __SMLALD(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[2] + x[4] * y[3] */
+ acc1 = __SMLALD(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px + 2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px + 3);
+
+ px += 4U;
+
+ /* acc2 += x[4] * y[2] + x[5] * y[3] */
+ acc2 = __SMLALD(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[2] + x[6] * y[3] */
+ acc3 = __SMLALD(x1, c0, acc3);
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[4] */
+ c0 = *py;
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALDX(x1, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[4], y[5] */
+ c0 = *__SIMD32(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px + 1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALD(x3, c0, acc2);
+ acc3 = __SMLALD(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[4], y[5] */
+ c0 = *__SIMD32(py)++;
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px + 1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALD(x3, c0, acc2);
+ acc3 = __SMLALD(x2, c0, acc3);
+
+ c0 = (*py);
+
+ /* Read y[6] */
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px + 2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x1, c0, acc0);
+ acc1 = __SMLALD(x2, c0, acc1);
+ acc2 = __SMLALDX(x2, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT(acc0 >> 15, 16));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q15_t) (__SSAT(acc1 >> 15, 16));
+ pOut += inc;
+
+ *pOut = (q15_t) (__SSAT(acc2 >> 15, 16));
+ pOut += inc;
+
+ *pOut = (q15_t) (__SSAT(acc3 >> 15, 16));
+ pOut += inc;
+
+ /* Increment the count by 4 as 4 output values are computed */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) * px++ * *py++);
+ sum += ((q63_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q63_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT(sum >> 15, 16));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment count by 1, as one output value is computed */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q63_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT(sum >> 15, 16));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */
+ sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+ /* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */
+ sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py++, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q15_t) (__SSAT((sum >> 15), 16));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ q15_t *pIn1 = pSrcA; /* inputA pointer */
+ q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and a varaible, inv is set to 1 */
+ /* If lengths are not equal then zero pad has to be done to make the two
+ * inputs of same length. But to improve the performance, we include zeroes
+ * in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * starting of the output buffer */
+ /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * ending of the output buffer */
+ /* Once the zero padding is done the remaining of the output is calcualted
+ * using convolution but with the shorter signal time shifted. */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q15_t) __SSAT((sum >> 15U), 16U);
+ else
+ *pDst++ = (q15_t) __SSAT((sum >> 15U), 16U);
+ }
+
+#endif /* #if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c
new file mode 100644
index 0000000..f2e946a
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q31.c
@@ -0,0 +1,653 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_q31.c
+ * Description: Correlation of Q31 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
+ * maximum of min(srcALen, srcBLen) number of additions is carried internally.
+ * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_correlate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t *pIn1; /* inputA pointer */
+ q31_t *pIn2; /* inputB pointer */
+ q31_t *pOut = pDst; /* output pointer */
+ q31_t *px; /* Intermediate inputA pointer */
+ q31_t *py; /* Intermediate inputB pointer */
+ q31_t *pSrc1; /* Intermediate pointers */
+ q63_t sum, acc0, acc1, acc2; /* Accumulators */
+ q31_t x0, x1, x2, c0; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1; /* Destination address modifier */
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 4] */
+ sum += (q63_t) * px++ * (*py++);
+ /* x[1] * y[srcBLen - 3] */
+ sum += (q63_t) * px++ * (*py++);
+ /* x[2] * y[srcBLen - 2] */
+ sum += (q63_t) * px++ * (*py++);
+ /* x[3] * y[srcBLen - 1] */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (sum >> 31);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll by 3 */
+ blkCnt = blockSize2 / 3;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+
+ /* read x[0], x[1] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+
+ /* Apply loop unrolling and compute 3 MACs simultaneously. */
+ k = srcBLen / 3;
+
+ /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 2 samples. */
+ do
+ {
+ /* Read y[0] sample */
+ c0 = *(py);
+
+ /* Read x[2] sample */
+ x2 = *(px);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[0] */
+ acc0 += ((q63_t) x0 * c0);
+ /* acc1 += x[1] * y[0] */
+ acc1 += ((q63_t) x1 * c0);
+ /* acc2 += x[2] * y[0] */
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Read y[1] sample */
+ c0 = *(py + 1U);
+
+ /* Read x[3] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[1] * y[1] */
+ acc0 += ((q63_t) x1 * c0);
+ /* acc1 += x[2] * y[1] */
+ acc1 += ((q63_t) x2 * c0);
+ /* acc2 += x[3] * y[1] */
+ acc2 += ((q63_t) x0 * c0);
+
+ /* Read y[2] sample */
+ c0 = *(py + 2U);
+
+ /* Read x[4] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[2] */
+ acc0 += ((q63_t) x2 * c0);
+ /* acc1 += x[3] * y[2] */
+ acc1 += ((q63_t) x0 * c0);
+ /* acc2 += x[4] * y[2] */
+ acc2 += ((q63_t) x1 * c0);
+
+ /* update scratch pointers */
+ px += 3U;
+ py += 3U;
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen - (3 * (srcBLen / 3));
+
+ while (k > 0U)
+ {
+ /* Read y[4] sample */
+ c0 = *(py++);
+
+ /* Read x[7] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[4] */
+ acc0 += ((q63_t) x0 * c0);
+ /* acc1 += x[5] * y[4] */
+ acc1 += ((q63_t) x1 * c0);
+ /* acc2 += x[6] * y[4] */
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (acc0 >> 31);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q31_t) (acc1 >> 31);
+ pOut += inc;
+
+ *pOut = (q31_t) (acc2 >> 31);
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 3 */
+ count += 3U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 - 3 * (blockSize2 / 3);
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) * px++ * (*py++);
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (sum >> 31);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (sum >> 31);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = pIn1 + (srcALen - (srcBLen - 1U));
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] */
+ sum += (q63_t) * px++ * (*py++);
+ /* sum += x[srcALen - srcBLen + 3] * y[2] */
+ sum += (q63_t) * px++ * (*py++);
+ /* sum += x[srcALen - srcBLen + 2] * y[1] */
+ sum += (q63_t) * px++ * (*py++);
+ /* sum += x[srcALen - srcBLen + 1] * y[0] */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) * px++ * (*py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q31_t) (sum >> 31);
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t *pIn1 = pSrcA; /* inputA pointer */
+ q31_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and a varaible, inv is set to 1 */
+ /* If lengths are not equal then zero pad has to be done to make the two
+ * inputs of same length. But to improve the performance, we include zeroes
+ * in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * starting of the output buffer */
+ /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * ending of the output buffer */
+ /* Once the zero padding is done the remaining of the output is calcualted
+ * using correlation but with the shorter signal time shifted. */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate correlation for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to correlation equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q31_t) (sum >> 31U);
+ else
+ *pDst++ = (q31_t) (sum >> 31U);
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q7.c
new file mode 100644
index 0000000..f8b1df5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_q7.c
@@ -0,0 +1,778 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_correlate_q7.c
+ * Description: Correlation of Q7 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Corr
+ * @{
+ */
+
+/**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
+ * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and saturated to 1.7 format.
+ *
+ * \par
+ * Refer the function <code>arm_correlate_opt_q7()</code> for a faster implementation of this function.
+ *
+ */
+
+void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q7_t *pIn1; /* inputA pointer */
+ q7_t *pIn2; /* inputB pointer */
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t *px; /* Intermediate inputA pointer */
+ q7_t *py; /* Intermediate inputB pointer */
+ q7_t *pSrc1; /* Intermediate pointers */
+ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
+ q31_t input1, input2; /* temporary variables */
+ q15_t in1, in2; /* temporary variables */
+ q7_t x0, x1, x2, x3, c0, c1; /* temporary variables for holding input and coefficient values */
+ uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
+ int32_t inc = 1;
+
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and the destination pointer modifier, inc is set to -1 */
+ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
+ /* But to improve the performance,
+ * we include zeroes in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
+ /* If srcALen < srcBLen,
+ * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcA);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcB);
+
+ /* Number of output samples is calculated */
+ outBlockSize = (2U * srcALen) - 1U;
+
+ /* When srcALen > srcBLen, zero padding is done to srcB
+ * to make their lengths equal.
+ * Instead, (outBlockSize - (srcALen + srcBLen - 1))
+ * number of output samples are made zero */
+ j = outBlockSize - (srcALen + (srcBLen - 1U));
+
+ /* Updating the pointer position to non zero value */
+ pOut += j;
+
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = (pSrcB);
+
+ /* Initialization of inputB pointer */
+ pIn2 = (pSrcA);
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+
+ /* CORR(x, y) = Reverse order(CORR(y, x)) */
+ /* Hence set the destination pointer to point to the last output sample */
+ pOut = pDst + ((srcALen + srcBLen) - 2U);
+
+ /* Destination address modifier is set to -1 */
+ inc = -1;
+
+ }
+
+ /* The function is internally
+ * divided into three parts according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first part of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second part of the algorithm, srcBLen number of multiplications are done.
+ * In the third part of the algorithm, the multiplications decrease by one
+ * for every iteration.*/
+ /* The algorithm is implemented in three stages.
+ * The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[srcBlen - 1]
+ * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
+ * ....
+ * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc1 = pIn2 + (srcBLen - 1U);
+ py = pSrc1;
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] , x[1] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 4] , y[srcBLen - 3] */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* x[0] * y[srcBLen - 4] */
+ /* x[1] * y[srcBLen - 3] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* x[2] , x[3] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[srcBLen - 2] , y[srcBLen - 1] */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* x[2] * y[srcBLen - 2] */
+ /* x[3] * y[srcBLen - 1] */
+ sum = __SMLAD(input1, input2, sum);
+
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0] * y[srcBLen - 1] */
+ sum += (q31_t) ((q15_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(sum >> 7, 8));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pSrc1 - count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
+ * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[0] sample */
+ c0 = *py++;
+ /* Read y[1] sample */
+ c1 = *py++;
+
+ /* Read x[3] sample */
+ x3 = *px++;
+
+ /* x[0] and x[1] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[0] and y[1] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc0 += x[0] * y[0] + x[1] * y[1] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[1] and x[2] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc1 += x[1] * y[0] + x[2] * y[1] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc2 += x[2] * y[0] + x[3] * y[1] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[4] sample */
+ x0 = *(px++);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc3 += x[3] * y[0] + x[4] * y[1] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ /* Read y[2] sample */
+ c0 = *py++;
+ /* Read y[3] sample */
+ c1 = *py++;
+
+ /* Read x[5] sample */
+ x1 = *px++;
+
+ /* x[2] and x[3] are packed */
+ in1 = (q15_t) x2;
+ in2 = (q15_t) x3;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[2] and y[3] are packed */
+ in1 = (q15_t) c0;
+ in2 = (q15_t) c1;
+
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc0 += x[2] * y[2] + x[3] * y[3] */
+ acc0 = __SMLAD(input1, input2, acc0);
+
+ /* x[3] and x[4] are packed */
+ in1 = (q15_t) x3;
+ in2 = (q15_t) x0;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc1 += x[3] * y[2] + x[4] * y[3] */
+ acc1 = __SMLAD(input1, input2, acc1);
+
+ /* x[4] and x[5] are packed */
+ in1 = (q15_t) x0;
+ in2 = (q15_t) x1;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc2 += x[4] * y[2] + x[5] * y[3] */
+ acc2 = __SMLAD(input1, input2, acc2);
+
+ /* Read x[6] sample */
+ x2 = *px++;
+
+ /* x[5] and x[6] are packed */
+ in1 = (q15_t) x1;
+ in2 = (q15_t) x2;
+
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* acc3 += x[5] * y[2] + x[6] * y[3] */
+ acc3 = __SMLAD(input1, input2, acc3);
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[4] sample */
+ c0 = *py++;
+
+ /* Read x[7] sample */
+ x3 = *px++;
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[4] */
+ acc0 += ((q15_t) x0 * c0);
+ /* acc1 += x[5] * y[4] */
+ acc1 += ((q15_t) x1 * c0);
+ /* acc2 += x[6] * y[4] */
+ acc2 += ((q15_t) x2 * c0);
+ /* acc3 += x[7] * y[4] */
+ acc3 += ((q15_t) x3 * c0);
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(acc0 >> 7, 8));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ *pOut = (q7_t) (__SSAT(acc1 >> 7, 8));
+ pOut += inc;
+
+ *pOut = (q7_t) (__SSAT(acc2 >> 7, 8));
+ pOut += inc;
+
+ *pOut = (q7_t) (__SSAT(acc3 >> 7, 8));
+ pOut += inc;
+
+ count += 4U;
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Reading two inputs of SrcA buffer and packing */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Reading two inputs of SrcB buffer and packing */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* Perform the multiply-accumulates */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q15_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(sum >> 7, 8));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over srcBLen */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += ((q15_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(sum >> 7, 8));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pIn2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
+ * ....
+ * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
+ * sum += x[srcALen-1] * y[0]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = pIn1 + (srcALen - (srcBLen - 1U));
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1] , x[srcALen - srcBLen + 2] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[0] , y[1] */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* sum += x[srcALen - srcBLen + 1] * y[0] */
+ /* sum += x[srcALen - srcBLen + 2] * y[1] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* x[srcALen - srcBLen + 3] , x[srcALen - srcBLen + 4] */
+ in1 = (q15_t) * px++;
+ in2 = (q15_t) * px++;
+ input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* y[2] , y[3] */
+ in1 = (q15_t) * py++;
+ in2 = (q15_t) * py++;
+ input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
+
+ /* sum += x[srcALen - srcBLen + 3] * y[2] */
+ /* sum += x[srcALen - srcBLen + 4] * y[3] */
+ sum = __SMLAD(input1, input2, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += ((q15_t) * px++ * *py++);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut = (q7_t) (__SSAT(sum >> 7, 8));
+ /* Destination pointer is updated according to the address modifier, inc */
+ pOut += inc;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the MAC count */
+ count--;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ q7_t *pIn1 = pSrcA; /* inputA pointer */
+ q7_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q31_t sum; /* Accumulator */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ /* But CORR(x, y) is reverse of CORR(y, x) */
+ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
+ /* and a varaible, inv is set to 1 */
+ /* If lengths are not equal then zero pad has to be done to make the two
+ * inputs of same length. But to improve the performance, we include zeroes
+ * in the output instead of zero padding either of the the inputs*/
+ /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * starting of the output buffer */
+ /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * ending of the output buffer */
+ /* Once the zero padding is done the remaining of the output is calcualted
+ * using convolution but with the shorter signal time shifted. */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q15_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q7_t) __SSAT((sum >> 7U), 8U);
+ else
+ *pDst++ = (q7_t) __SSAT((sum >> 7U), 8U);
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Corr group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_f32.c
new file mode 100644
index 0000000..fd8e237
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_f32.c
@@ -0,0 +1,512 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_f32.c
+ * Description: FIR decimation for floating-point sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup FIR_decimate Finite Impulse Response (FIR) Decimator
+ *
+ * These functions combine an FIR filter together with a decimator.
+ * They are used in multirate systems for reducing the sample rate of a signal without introducing aliasing distortion.
+ * Conceptually, the functions are equivalent to the block diagram below:
+ * \image html FIRDecimator.gif "Components included in the FIR Decimator functions"
+ * When decimating by a factor of <code>M</code>, the signal should be prefiltered by a lowpass filter with a normalized
+ * cutoff frequency of <code>1/M</code> in order to prevent aliasing distortion.
+ * The user of the function is responsible for providing the filter coefficients.
+ *
+ * The FIR decimator functions provided in the CMSIS DSP Library combine the FIR filter and the decimator in an efficient manner.
+ * Instead of calculating all of the FIR filter outputs and discarding <code>M-1</code> out of every <code>M</code>, only the
+ * samples output by the decimator are computed.
+ * The functions operate on blocks of input and output data.
+ * <code>pSrc</code> points to an array of <code>blockSize</code> input values and
+ * <code>pDst</code> points to an array of <code>blockSize/M</code> output values.
+ * In order to have an integer number of output samples <code>blockSize</code>
+ * must always be a multiple of the decimation factor <code>M</code>.
+ *
+ * The library provides separate functions for Q15, Q31 and floating-point data types.
+ *
+ * \par Algorithm:
+ * The FIR portion of the algorithm uses the standard form filter:
+ * <pre>
+ * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+ * </pre>
+ * where, <code>b[n]</code> are the filter coefficients.
+ * \par
+ * The <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ * Coefficients are stored in time reversed order.
+ * \par
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+ * Samples in the state buffer are stored in the order:
+ * \par
+ * <pre>
+ * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+ * </pre>
+ * The state variables are updated after each block of data is processed, the coefficients are untouched.
+ *
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable array should be allocated separately.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * - Checks to make sure that the size of the input is a multiple of the decimation factor.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numTaps, pCoeffs, M (decimation factor), pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * The code below statically initializes each of the 3 different data type filter instance structures
+ * <pre>
+ *arm_fir_decimate_instance_f32 S = {M, numTaps, pCoeffs, pState};
+ *arm_fir_decimate_instance_q31 S = {M, numTaps, pCoeffs, pState};
+ *arm_fir_decimate_instance_q15 S = {M, numTaps, pCoeffs, pState};
+ * </pre>
+ * where <code>M</code> is the decimation factor; <code>numTaps</code> is the number of filter coefficients in the filter;
+ * <code>pCoeffs</code> is the address of the coefficient buffer;
+ * <code>pState</code> is the address of the state buffer.
+ * Be sure to set the values in the state buffer to zeros when doing static initialization.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the FIR decimate filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t sum0; /* Accumulator */
+ float32_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+#if defined (ARM_MATH_DSP)
+
+ uint32_t blkCntN4;
+ float32_t *px0, *px1, *px2, *px3;
+ float32_t acc0, acc1, acc2, acc3;
+ float32_t x1, x2, x3;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 4;
+ blkCntN4 = outBlockSize - (4 * blkCnt);
+
+ while (blkCnt > 0U)
+ {
+ /* Copy 4 * decimation factor number of new input samples into the state buffer */
+ i = 4 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* Initialize state pointer for all the samples */
+ px0 = pState;
+ px1 = pState + S->M;
+ px2 = pState + 2 * S->M;
+ px3 = pState + 3 * S->M;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-1] sample for acc0 */
+ x0 = *(px0++);
+ /* Read x[n-numTaps-1] sample for acc1 */
+ x1 = *(px1++);
+ /* Read x[n-numTaps-1] sample for acc2 */
+ x2 = *(px2++);
+ /* Read x[n-numTaps-1] sample for acc3 */
+ x3 = *(px3++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-2] sample for acc0, acc1, acc2, acc3 */
+ x0 = *(px0++);
+ x1 = *(px1++);
+ x2 = *(px2++);
+ x3 = *(px3++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample acc0, acc1, acc2, acc3 */
+ x0 = *(px0++);
+ x1 = *(px1++);
+ x2 = *(px2++);
+ x3 = *(px3++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample acc0, acc1, acc2, acc3 */
+ x0 = *(px0++);
+ x1 = *(px1++);
+ x2 = *(px2++);
+ x3 = *(px3++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch state variables for acc0, acc1, acc2, acc3 */
+ x0 = *(px0++);
+ x1 = *(px1++);
+ x2 = *(px2++);
+ x3 = *(px3++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + 4 * S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while (blkCntN4 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-1] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-2] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum0;
+
+ /* Decrement the loop counter */
+ blkCntN4--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum0;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ i = (numTaps - 1U);
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
new file mode 100644
index 0000000..684640e
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
@@ -0,0 +1,586 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_fast_q15.c
+ * Description: Fast Q15 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, state buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around and distorts the result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2).
+ * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ * Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_decimate_init_q15()</code> to initialize the filter structure.
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulators */
+ q31_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c1 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c0, sum0);
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c1, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c0, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+#else
+
+
+void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulators */
+ q31_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q31.c
new file mode 100644
index 0000000..46b7d3d
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q31.c
@@ -0,0 +1,339 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_fast_q31.c
+ * Description: Fast Q31 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ * These intermediate results are added to a 2.30 accumulator.
+ * Finally, the accumulator is saturated and converted to a 1.31 result.
+ * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2).
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
+ * Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_decimate_init_q31()</code> to initialize the filter structure.
+ */
+
+void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t *px; /* Temporary pointers for state buffer */
+ q31_t *pb; /* Temporary pointers for coefficient buffer */
+ q31_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+ uint32_t blkCntN2;
+ q31_t x1;
+ q31_t acc0, acc1;
+ q31_t *px0, *px1;
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+
+ blkCnt = outBlockSize / 2;
+ blkCntN2 = outBlockSize - (2 * blkCnt);
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+ px1 = pState + S->M;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb);
+
+ /* Read x[n-numTaps-1] for sample 0 sample 1 */
+ x0 = *(px0);
+ x1 = *(px1);
+
+ /* Perform the multiply-accumulate */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb + 1U);
+
+ /* Read x[n-numTaps-2] for sample 0 sample 1 */
+ x0 = *(px0 + 1U);
+ x1 = *(px1 + 1U);
+
+ /* Perform the multiply-accumulate */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb + 2U);
+
+ /* Read x[n-numTaps-3] for sample 0 sample 1 */
+ x0 = *(px0 + 2U);
+ x1 = *(px1 + 2U);
+ pb += 4U;
+
+ /* Perform the multiply-accumulate */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb - 1U);
+
+ /* Read x[n-numTaps-4] for sample 0 sample 1 */
+ x0 = *(px0 + 3U);
+ x1 = *(px1 + 3U);
+
+
+ /* Perform the multiply-accumulate */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* update state pointers */
+ px0 += 4U;
+ px1 += 4U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x0 = *(px0++);
+ x1 = *(px1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (acc0 << 1);
+ *pDst++ = (q31_t) (acc1 << 1);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while (blkCntN2 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-1] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-2] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 << 1);
+
+ /* Decrement the loop counter */
+ blkCntN2--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_f32.c
new file mode 100644
index 0000000..45797dc
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_f32.c
@@ -0,0 +1,105 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_init_f32.c
+ * Description: Floating-point FIR Decimator initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> words where <code>blockSize</code> is the number of input samples passed to <code>arm_fir_decimate_f32()</code>.
+ * <code>M</code> is the decimation factor.
+ */
+
+arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+ /* The size of the input block must be a multiple of the decimation factor */
+ if ((blockSize % M) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Decimation Factor */
+ S->M = M;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q15.c
new file mode 100644
index 0000000..7314711
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q15.c
@@ -0,0 +1,107 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_init_q15.c
+ * Description: Initialization function for the Q15 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> words where <code>blockSize</code> is the number of input samples
+ * to the call <code>arm_fir_decimate_q15()</code>.
+ * <code>M</code> is the decimation factor.
+ */
+
+arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize)
+{
+
+ arm_status status;
+
+ /* The size of the input block must be a multiple of the decimation factor */
+ if ((blockSize % M) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear the state buffer. The size of buffer is always (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Decimation factor */
+ S->M = M;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q31.c
new file mode 100644
index 0000000..f6f3fb2
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_init_q31.c
@@ -0,0 +1,105 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_init_q31.c
+ * Description: Initialization function for Q31 FIR Decimation filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> words where <code>blockSize</code> is the number of input samples passed to <code>arm_fir_decimate_q31()</code>.
+ * <code>M</code> is the decimation factor.
+ */
+
+arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+ /* The size of the input block must be a multiple of the decimation factor */
+ if ((blockSize % M) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1)) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Decimation factor */
+ S->M = M;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q15.c
new file mode 100644
index 0000000..56f12fb
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q15.c
@@ -0,0 +1,684 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_q15.c
+ * Description: Q15 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_fast_q15()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ q63_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c1 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c0, sum0);
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c1, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c0, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+#else
+
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ q63_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#else
+
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+
+/* Run the below code for Cortex-M0 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q31_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /*Store filter output , smlad will return the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+
+}
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q31.c
new file mode 100644
index 0000000..6a13cb5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_q31.c
@@ -0,0 +1,299 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_q31.c
+ * Description: Q31 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2).
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t *px; /* Temporary pointers for state buffer */
+ q31_t *pb; /* Temporary pointers for coefficient buffer */
+ q63_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-1] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-2] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 >> 31);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 >> 31);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_decimate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c
new file mode 100644
index 0000000..812f9df
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c
@@ -0,0 +1,985 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_f32.c
+ * Description: Floating-point FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+* @ingroup groupFilters
+*/
+
+/**
+* @defgroup FIR Finite Impulse Response (FIR) Filters
+*
+* This set of functions implements Finite Impulse Response (FIR) filters
+* for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
+* The functions operate on blocks of input and output data and each call to the function processes
+* <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
+*
+* \par Algorithm:
+* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
+* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
+* <pre>
+* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+* </pre>
+* \par
+* \image html FIR.gif "Finite Impulse Response filter"
+* \par
+* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+* Coefficients are stored in time reversed order.
+* \par
+* <pre>
+* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+* </pre>
+* \par
+* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+* Samples in the state buffer are stored in the following order.
+* \par
+* <pre>
+* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+* </pre>
+* \par
+* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
+* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
+* to be avoided and yields a significant speed improvement.
+* The state variables are updated after each block of data is processed; the coefficients are untouched.
+* \par Instance Structure
+* The coefficients and state variables for a filter are stored together in an instance data structure.
+* A separate instance structure must be defined for each filter.
+* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+* There are separate instance structure declarations for each of the 4 supported data types.
+*
+* \par Initialization Functions
+* There is also an associated initialization function for each data type.
+* The initialization function performs the following operations:
+* - Sets the values of the internal structure fields.
+* - Zeros out the values in the state buffer.
+* To do this manually without calling the init function, assign the follow subfields of the instance structure:
+* numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
+*
+* \par
+* Use of the initialization function is optional.
+* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+* To place an instance structure into a const data section, the instance structure must be manually initialized.
+* Set the values in the state buffer to zeros before static initialization.
+* The code below statically initializes each of the 4 different data type filter instance structures
+* <pre>
+*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
+*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
+*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
+*arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
+* </pre>
+*
+* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
+* <code>pCoeffs</code> is the address of the coefficient buffer.
+*
+* \par Fixed-Point Behavior
+* Care must be taken when using the fixed-point versions of the FIR filter functions.
+* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+* Refer to the function specific documentation below for usage guidelines.
+*/
+
+/**
+* @addtogroup FIR
+* @{
+*/
+
+/**
+*
+* @param[in] *S points to an instance of the floating-point FIR filter structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[out] *pDst points to the block of output data.
+* @param[in] blockSize number of samples to process per call.
+* @return none.
+*
+*/
+
+#if defined(ARM_MATH_CM7)
+
+void arm_fir_f32(
+const arm_fir_instance_f32 * S,
+float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
+ float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 8 output values simultaneously.
+ * The variables acc0 ... acc7 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 3;
+
+ /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
+ ** a second loop below computes the remaining 1 to 7 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+ acc4 = 0.0f;
+ acc5 = 0.0f;
+ acc6 = 0.0f;
+ acc7 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* This is separated from the others to avoid
+ * a call to __aeabi_memmove which would be slower
+ */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+ x3 = *px++;
+ x4 = *px++;
+ x5 = *px++;
+ x6 = *px++;
+
+ /* Loop unrolling. Process 8 taps at a time. */
+ tapCnt = numTaps >> 3U;
+
+ /* Loop over the number of taps. Unroll by a factor of 8.
+ ** Repeat until we've computed numTaps-8 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x7 = *(px++);
+
+ /* acc0 += b[numTaps-1] * x[n-numTaps] */
+ acc0 += x0 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
+ acc2 += x2 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
+ acc3 += x3 * c0;
+
+ /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
+ acc4 += x4 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
+ acc5 += x5 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
+ acc6 += x6 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
+ acc7 += x7 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x1 * c0;
+ acc1 += x2 * c0;
+ acc2 += x3 * c0;
+ acc3 += x4 * c0;
+ acc4 += x5 * c0;
+ acc5 += x6 * c0;
+ acc6 += x7 * c0;
+ acc7 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x2 * c0;
+ acc1 += x3 * c0;
+ acc2 += x4 * c0;
+ acc3 += x5 * c0;
+ acc4 += x6 * c0;
+ acc5 += x7 * c0;
+ acc6 += x0 * c0;
+ acc7 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x3 * c0;
+ acc1 += x4 * c0;
+ acc2 += x5 * c0;
+ acc3 += x6 * c0;
+ acc4 += x7 * c0;
+ acc5 += x0 * c0;
+ acc6 += x1 * c0;
+ acc7 += x2 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x3 = *(px++);
+ /* Perform the multiply-accumulates */
+ acc0 += x4 * c0;
+ acc1 += x5 * c0;
+ acc2 += x6 * c0;
+ acc3 += x7 * c0;
+ acc4 += x0 * c0;
+ acc5 += x1 * c0;
+ acc6 += x2 * c0;
+ acc7 += x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x4 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x5 * c0;
+ acc1 += x6 * c0;
+ acc2 += x7 * c0;
+ acc3 += x0 * c0;
+ acc4 += x1 * c0;
+ acc5 += x2 * c0;
+ acc6 += x3 * c0;
+ acc7 += x4 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x5 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x6 * c0;
+ acc1 += x7 * c0;
+ acc2 += x0 * c0;
+ acc3 += x1 * c0;
+ acc4 += x2 * c0;
+ acc5 += x3 * c0;
+ acc6 += x4 * c0;
+ acc7 += x5 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x6 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x7 * c0;
+ acc1 += x0 * c0;
+ acc2 += x1 * c0;
+ acc3 += x2 * c0;
+ acc4 += x3 * c0;
+ acc5 += x4 * c0;
+ acc6 += x5 * c0;
+ acc7 += x6 * c0;
+
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 8, compute the remaining filter taps */
+ tapCnt = numTaps % 0x8U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x7 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+ acc4 += x4 * c0;
+ acc5 += x5 * c0;
+ acc6 += x6 * c0;
+ acc7 += x7 * c0;
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+ x3 = x4;
+ x4 = x5;
+ x5 = x6;
+ x6 = x7;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by 8 to process the next group of 8 samples */
+ pState = pState + 8;
+
+ /* The results in the 8 accumulators, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+ *pDst++ = acc4;
+ *pDst++ = acc5;
+ *pDst++ = acc6;
+ *pDst++ = acc7;
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x8U;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += *px++ * *pb++;
+ i--;
+
+ } while (i > 0U);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc0;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#elif defined(ARM_MATH_CM0_FAMILY)
+
+void arm_fir_f32(
+const arm_fir_instance_f32 * S,
+float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Initialize blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += *px++ * *pb++;
+ i--;
+
+ } while (i > 0U);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ tapCnt = numTaps - 1U;
+
+ /* Copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#else
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_f32(
+const arm_fir_instance_f32 * S,
+float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
+ float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+ float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 8 output values simultaneously.
+ * The variables acc0 ... acc7 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 3;
+
+ /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
+ ** a second loop below computes the remaining 1 to 7 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+ acc4 = 0.0f;
+ acc5 = 0.0f;
+ acc6 = 0.0f;
+ acc7 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* This is separated from the others to avoid
+ * a call to __aeabi_memmove which would be slower
+ */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+ x3 = *px++;
+ x4 = *px++;
+ x5 = *px++;
+ x6 = *px++;
+
+ /* Loop unrolling. Process 8 taps at a time. */
+ tapCnt = numTaps >> 3U;
+
+ /* Loop over the number of taps. Unroll by a factor of 8.
+ ** Repeat until we've computed numTaps-8 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x7 = *(px++);
+
+ /* acc0 += b[numTaps-1] * x[n-numTaps] */
+ p0 = x0 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
+ p1 = x1 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
+ p2 = x2 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
+ p3 = x3 * c0;
+
+ /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
+ p4 = x4 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
+ p5 = x5 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
+ p6 = x6 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
+ p7 = x7 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+
+ /* Perform the multiply-accumulate */
+ p0 = x1 * c0;
+ p1 = x2 * c0;
+ p2 = x3 * c0;
+ p3 = x4 * c0;
+ p4 = x5 * c0;
+ p5 = x6 * c0;
+ p6 = x7 * c0;
+ p7 = x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x2 * c0;
+ p1 = x3 * c0;
+ p2 = x4 * c0;
+ p3 = x5 * c0;
+ p4 = x6 * c0;
+ p5 = x7 * c0;
+ p6 = x0 * c0;
+ p7 = x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x3 * c0;
+ p1 = x4 * c0;
+ p2 = x5 * c0;
+ p3 = x6 * c0;
+ p4 = x7 * c0;
+ p5 = x0 * c0;
+ p6 = x1 * c0;
+ p7 = x2 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x3 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x4 * c0;
+ p1 = x5 * c0;
+ p2 = x6 * c0;
+ p3 = x7 * c0;
+ p4 = x0 * c0;
+ p5 = x1 * c0;
+ p6 = x2 * c0;
+ p7 = x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x4 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x5 * c0;
+ p1 = x6 * c0;
+ p2 = x7 * c0;
+ p3 = x0 * c0;
+ p4 = x1 * c0;
+ p5 = x2 * c0;
+ p6 = x3 * c0;
+ p7 = x4 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x5 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x6 * c0;
+ p1 = x7 * c0;
+ p2 = x0 * c0;
+ p3 = x1 * c0;
+ p4 = x2 * c0;
+ p5 = x3 * c0;
+ p6 = x4 * c0;
+ p7 = x5 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x6 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x7 * c0;
+ p1 = x0 * c0;
+ p2 = x1 * c0;
+ p3 = x2 * c0;
+ p4 = x3 * c0;
+ p5 = x4 * c0;
+ p6 = x5 * c0;
+ p7 = x6 * c0;
+
+ tapCnt--;
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+ }
+
+ /* If the filter length is not a multiple of 8, compute the remaining filter taps */
+ tapCnt = numTaps % 0x8U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x7 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ p0 = x0 * c0;
+ p1 = x1 * c0;
+ p2 = x2 * c0;
+ p3 = x3 * c0;
+ p4 = x4 * c0;
+ p5 = x5 * c0;
+ p6 = x6 * c0;
+ p7 = x7 * c0;
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+ x3 = x4;
+ x4 = x5;
+ x5 = x6;
+ x6 = x7;
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by 8 to process the next group of 8 samples */
+ pState = pState + 8;
+
+ /* The results in the 8 accumulators, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+ *pDst++ = acc4;
+ *pDst++ = acc5;
+ *pDst++ = acc6;
+ *pDst++ = acc7;
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x8U;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += *px++ * *pb++;
+ i--;
+
+ } while (i > 0U);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc0;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#endif
+
+/**
+* @} end of FIR group
+*/
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q15.c
new file mode 100644
index 0000000..35e431b
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q15.c
@@ -0,0 +1,333 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_fast_q15.c
+ * Description: Q15 Fast FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @param[in] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around and distorts the result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
+ * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_init_q15()</code> to initialize the filter structure.
+ */
+
+void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
+ q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer.
+ ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
+ px = pState;
+
+ /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
+ pb = pCoeffs;
+
+ /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
+ x2 = *__SIMD32(px)++;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0)
+ {
+ /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
+ acc2 = __SMLAD(x2, c0, acc2);
+
+ /* pack x[n-N-1] and x[n-N-2] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* Read state x[n-N-4], x[n-N-5] */
+ x0 = _SIMD32_OFFSET(px);
+
+ /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ /* pack x[n-N-3] and x[n-N-4] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x0, x2, 0);
+#else
+ x1 = __PKHBT(x2, x0, 0);
+#endif
+
+ /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ /* Read coefficients b[N-2], b[N-3] */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
+ acc0 = __SMLAD(x2, c0, acc0);
+
+ /* Read state x[n-N-6], x[n-N-7] with offset */
+ x2 = _SIMD32_OFFSET(px + 2U);
+
+ /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
+ acc2 = __SMLAD(x0, c0, acc2);
+
+ /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ /* pack x[n-N-5] and x[n-N-6] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
+ acc3 = __SMLADX(x1, c0, acc3);
+
+ /* Update state pointer for next state reading */
+ px += 4U;
+
+ /* Decrement tap count */
+ tapCnt--;
+
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps.
+ ** This is always be 2 taps since the filter length is even. */
+ if ((numTaps & 0x3U) != 0U)
+ {
+
+ /* Read last two coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc2 = __SMLAD(x2, c0, acc2);
+
+ /* pack state variables */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* Read last state variables */
+ x0 = *__SIMD32(px);
+
+ /* Perform the multiply-accumulates */
+ acc1 = __SMLADX(x1, c0, acc1);
+
+ /* pack state variables */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x0, x2, 0);
+#else
+ x1 = __PKHBT(x2, x0, 0);
+#endif
+
+ /* Perform the multiply-accumulates */
+ acc3 = __SMLADX(x1, c0, acc3);
+ }
+
+ /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the 4 outputs in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 4U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+ while (blkCnt > 0U)
+ {
+ /* Copy two samples into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Use SIMD to hold states and coefficients */
+ px = pState;
+ pb = pCoeffs;
+
+ tapCnt = numTaps >> 1U;
+
+ do
+ {
+
+ acc0 += (q31_t) * px++ * *pb++;
+ acc0 += (q31_t) * px++ * *pb++;
+
+ tapCnt--;
+ }
+ while (tapCnt > 0U);
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculation of count for copying integer writes */
+ tapCnt = (numTaps - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ tapCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* copy remaining data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q31.c
new file mode 100644
index 0000000..bd9c686
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q31.c
@@ -0,0 +1,293 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_fast_q31.c
+ * Description: Processing function for the Q31 Fast FIR filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @param[in] *S points to an instance of the Q31 structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
+ * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
+ * These intermediate results are added to a 2.30 accumulator.
+ * Finally, the accumulator is saturated and converted to a 1.31 result.
+ * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure.
+ */
+
+IAR_ONLY_LOW_OPTIMIZATION_ENTER
+void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, x1, x2, x3; /* Temporary variables to hold state */
+ q31_t c0; /* Temporary variable to hold coefficient value */
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Read the first three samples from the state buffer:
+ * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+ i = tapCnt;
+
+ while (i > 0U)
+ {
+ /* Read the b[numTaps] coefficient */
+ c0 = *pb;
+
+ /* Read x[n-numTaps-3] sample */
+ x3 = *px;
+
+ /* acc0 += b[numTaps] * x[n-numTaps] */
+ multAcc_32x32_keep32_R(acc0, x0, c0);
+
+ /* acc1 += b[numTaps] * x[n-numTaps-1] */
+ multAcc_32x32_keep32_R(acc1, x1, c0);
+
+ /* acc2 += b[numTaps] * x[n-numTaps-2] */
+ multAcc_32x32_keep32_R(acc2, x2, c0);
+
+ /* acc3 += b[numTaps] * x[n-numTaps-3] */
+ multAcc_32x32_keep32_R(acc3, x3, c0);
+
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb + 1U);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulates */
+ multAcc_32x32_keep32_R(acc0, x1, c0);
+ multAcc_32x32_keep32_R(acc1, x2, c0);
+ multAcc_32x32_keep32_R(acc2, x3, c0);
+ multAcc_32x32_keep32_R(acc3, x0, c0);
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb + 2U);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ multAcc_32x32_keep32_R(acc0, x2, c0);
+ multAcc_32x32_keep32_R(acc1, x3, c0);
+ multAcc_32x32_keep32_R(acc2, x0, c0);
+ multAcc_32x32_keep32_R(acc3, x1, c0);
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *(pb + 3U);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px + 3U);
+
+ /* Perform the multiply-accumulates */
+ multAcc_32x32_keep32_R(acc0, x3, c0);
+ multAcc_32x32_keep32_R(acc1, x0, c0);
+ multAcc_32x32_keep32_R(acc2, x1, c0);
+ multAcc_32x32_keep32_R(acc3, x2, c0);
+
+ /* update coefficient pointer */
+ pb += 4U;
+ px += 4U;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+
+ i = numTaps - (tapCnt * 4U);
+ while (i > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ multAcc_32x32_keep32_R(acc0, x0, c0);
+ multAcc_32x32_keep32_R(acc1, x1, c0);
+ multAcc_32x32_keep32_R(acc2, x2, c0);
+ multAcc_32x32_keep32_R(acc3, x3, c0);
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 4;
+
+ /* The results in the 4 accumulators are in 2.30 format. Convert to 1.31
+ ** Then store the 4 outputs in the destination buffer. */
+ *pDst++ = (q31_t) (acc0 << 1);
+ *pDst++ = (q31_t) (acc1 << 1);
+ *pDst++ = (q31_t) (acc2 << 1);
+ *pDst++ = (q31_t) (acc3 << 1);
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++)));
+ i--;
+ } while (i > 0U);
+
+ /* The result is in 2.30 format. Convert to 1.31
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q31_t) (acc0 << 1);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+}
+IAR_ONLY_LOW_OPTIMIZATION_EXIT
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_f32.c
new file mode 100644
index 0000000..25fcb01
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_f32.c
@@ -0,0 +1,84 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_init_f32.c
+ * Description: Floating-point FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed per call.
+ * @return none.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_f32()</code>.
+ */
+
+void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and the size of state buffer is (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q15.c
new file mode 100644
index 0000000..a5638d5
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q15.c
@@ -0,0 +1,142 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_init_q15.c
+ * Description: Q15 FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] *pCoeffs points to the filter coefficients buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize is number of samples processed per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if
+ * <code>numTaps</code> is not greater than or equal to 4 and even.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * Note that <code>numTaps</code> must be even and greater than or equal to 4.
+ * To implement an odd length filter simply increase <code>numTaps</code> by 1 and set the last coefficient to zero.
+ * For example, to implement a filter with <code>numTaps=3</code> and coefficients
+ * <pre>
+ * {0.3, -0.8, 0.3}
+ * </pre>
+ * set <code>numTaps=4</code> and use the coefficients:
+ * <pre>
+ * {0.3, -0.8, 0.3, 0}.
+ * </pre>
+ * Similarly, to implement a two point filter
+ * <pre>
+ * {0.3, -0.3}
+ * </pre>
+ * set <code>numTaps=4</code> and use the coefficients:
+ * <pre>
+ * {0.3, -0.3, 0, 0}.
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize</code>, when running on Cortex-M4 and Cortex-M3 and is of length <code>numTaps+blockSize-1</code>, when running on Cortex-M0 where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q15()</code>.
+ */
+
+arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* The Number of filter coefficients in the filter must be even and at least 4 */
+ if (numTaps & 0x1U)
+ {
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear the state buffer. The size is always (blockSize + numTaps ) */
+ memset(pState, 0, (numTaps + (blockSize)) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ status = ARM_MATH_SUCCESS;
+
+ return (status);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q31.c
new file mode 100644
index 0000000..2367a65
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q31.c
@@ -0,0 +1,84 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_init_q31.c
+ * Description: Q31 FIR filter initialization function.
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @details
+ *
+ * @param[in,out] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed per call.
+ * @return none.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q31()</code>.
+ */
+
+void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and state array size is (blockSize + numTaps - 1) */
+ memset(pState, 0, (blockSize + ((uint32_t) numTaps - 1U)) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q7.c
new file mode 100644
index 0000000..5a91fb8
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_init_q7.c
@@ -0,0 +1,82 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_init_q7.c
+ * Description: Q7 FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+/**
+ * @param[in,out] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed per call.
+ * @return none
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q7()</code>.
+ */
+
+void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize)
+{
+
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q7_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c
new file mode 100644
index 0000000..5f9d19c
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c
@@ -0,0 +1,569 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_f32.c
+ * Description: Floating-point FIR interpolation sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @defgroup FIR_Interpolate Finite Impulse Response (FIR) Interpolator
+ *
+ * These functions combine an upsampler (zero stuffer) and an FIR filter.
+ * They are used in multirate systems for increasing the sample rate of a signal without introducing high frequency images.
+ * Conceptually, the functions are equivalent to the block diagram below:
+ * \image html FIRInterpolator.gif "Components included in the FIR Interpolator functions"
+ * After upsampling by a factor of <code>L</code>, the signal should be filtered by a lowpass filter with a normalized
+ * cutoff frequency of <code>1/L</code> in order to eliminate high frequency copies of the spectrum.
+ * The user of the function is responsible for providing the filter coefficients.
+ *
+ * The FIR interpolator functions provided in the CMSIS DSP Library combine the upsampler and FIR filter in an efficient manner.
+ * The upsampler inserts <code>L-1</code> zeros between each sample.
+ * Instead of multiplying by these zero values, the FIR filter is designed to skip them.
+ * This leads to an efficient implementation without any wasted effort.
+ * The functions operate on blocks of input and output data.
+ * <code>pSrc</code> points to an array of <code>blockSize</code> input values and
+ * <code>pDst</code> points to an array of <code>blockSize*L</code> output values.
+ *
+ * The library provides separate functions for Q15, Q31, and floating-point data types.
+ *
+ * \par Algorithm:
+ * The functions use a polyphase filter structure:
+ * <pre>
+ * y[n] = b[0] * x[n] + b[L] * x[n-1] + ... + b[L*(phaseLength-1)] * x[n-phaseLength+1]
+ * y[n+1] = b[1] * x[n] + b[L+1] * x[n-1] + ... + b[L*(phaseLength-1)+1] * x[n-phaseLength+1]
+ * ...
+ * y[n+(L-1)] = b[L-1] * x[n] + b[2*L-1] * x[n-1] + ....+ b[L*(phaseLength-1)+(L-1)] * x[n-phaseLength+1]
+ * </pre>
+ * This approach is more efficient than straightforward upsample-then-filter algorithms.
+ * With this method the computation is reduced by a factor of <code>1/L</code> when compared to using a standard FIR filter.
+ * \par
+ * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ * <code>numTaps</code> must be a multiple of the interpolation factor <code>L</code> and this is checked by the
+ * initialization functions.
+ * Internally, the function divides the FIR filter's impulse response into shorter filters of length
+ * <code>phaseLength=numTaps/L</code>.
+ * Coefficients are stored in time reversed order.
+ * \par
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to a state array of size <code>blockSize + phaseLength - 1</code>.
+ * Samples in the state buffer are stored in the order:
+ * \par
+ * <pre>
+ * {x[n-phaseLength+1], x[n-phaseLength], x[n-phaseLength-1], x[n-phaseLength-2]....x[0], x[1], ..., x[blockSize-1]}
+ * </pre>
+ * The state variables are updated after each block of data is processed, the coefficients are untouched.
+ *
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable array should be allocated separately.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * - Checks to make sure that the length of the filter is a multiple of the interpolation factor.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * L (interpolation factor), pCoeffs, phaseLength (numTaps / L), pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * The code below statically initializes each of the 3 different data type filter instance structures
+ * <pre>
+ * arm_fir_interpolate_instance_f32 S = {L, phaseLength, pCoeffs, pState};
+ * arm_fir_interpolate_instance_q31 S = {L, phaseLength, pCoeffs, pState};
+ * arm_fir_interpolate_instance_q15 S = {L, phaseLength, pCoeffs, pState};
+ * </pre>
+ * where <code>L</code> is the interpolation factor; <code>phaseLength=numTaps/L</code> is the
+ * length of each of the shorter FIR filters used internally,
+ * <code>pCoeffs</code> is the address of the coefficient buffer;
+ * <code>pState</code> is the address of the state buffer.
+ * Be sure to set the values in the state buffer to zeros when doing static initialization.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the FIR interpolate filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ float32_t sum0; /* Accumulators */
+ float32_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, j; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+ float32_t acc0, acc1, acc2, acc3;
+ float32_t x1, x2, x3;
+ uint32_t blkCntN4;
+ float32_t c1, c2, c3;
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (phaseLen - 1U);
+
+ /* Initialise blkCnt */
+ blkCnt = blockSize / 4;
+ blkCntN4 = blockSize - (4 * blkCnt);
+
+ /* Samples loop unrolled by 4 */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = (S->L);
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2U;
+
+ x0 = *(ptr1++);
+ x1 = *(ptr1++);
+ x2 = *(ptr1++);
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x3 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Read the coefficient */
+ c1 = *(ptr2 + S->L);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x1 * c1;
+ acc1 += x2 * c1;
+ acc2 += x3 * c1;
+ acc3 += x0 * c1;
+
+ /* Read the coefficient */
+ c2 = *(ptr2 + S->L * 2);
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x2 * c2;
+ acc1 += x3 * c2;
+ acc2 += x0 * c2;
+ acc3 += x1 * c2;
+
+ /* Read the coefficient */
+ c3 = *(ptr2 + S->L * 3);
+
+ /* Read the input sample */
+ x2 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x3 * c3;
+ acc1 += x0 * c3;
+ acc2 += x1 * c3;
+ acc3 += x2 * c3;
+
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += 4 * S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x3 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* update states for next sample processing */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst = acc0;
+ *(pDst + S->L) = acc1;
+ *(pDst + 2 * S->L) = acc2;
+ *(pDst + 3 * S->L) = acc3;
+
+ pDst++;
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 4;
+
+ pDst += S->L * 3;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+
+ while (blkCntN4 > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum0 = 0.0f;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2U;
+ while (tapCnt > 0U)
+ {
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum0 += *(ptr1++) * (*ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum0;
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCntN4--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (phaseLen - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (phaseLen - 1U) % 0x04U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+
+
+ float32_t sum; /* Accumulator */
+ uint32_t i, blkCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (phaseLen - 1U);
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0.0f;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (i - 1U);
+
+ /* Loop over the polyPhase length */
+ tapCnt = phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *ptr1++ * *ptr2;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = phaseLen - 1U;
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_f32.c
new file mode 100644
index 0000000..415c8da
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_f32.c
@@ -0,0 +1,109 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_init_f32.c
+ * Description: Floating-point FIR interpolator initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}
+ * </pre>
+ * The length of the filter <code>numTaps</code> must be a multiple of the interpolation factor <code>L</code>.
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>(numTaps/L)+blockSize-1</code> words
+ * where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_interpolate_f32()</code>.
+ */
+
+arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+ /* The filter length must be a multiple of the interpolation factor */
+ if ((numTaps % L) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign Interpolation factor */
+ S->L = L;
+
+ /* Assign polyPhaseLength */
+ S->phaseLength = numTaps / L;
+
+ /* Clear state buffer and size of state array is always phaseLength + blockSize - 1 */
+ memset(pState, 0,
+ (blockSize +
+ ((uint32_t) S->phaseLength - 1U)) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q15.c
new file mode 100644
index 0000000..6dce943
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q15.c
@@ -0,0 +1,108 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_init_q15.c
+ * Description: Q15 FIR interpolator initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}
+ * </pre>
+ * The length of the filter <code>numTaps</code> must be a multiple of the interpolation factor <code>L</code>.
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>(numTaps/L)+blockSize-1</code> words
+ * where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_interpolate_q15()</code>.
+ */
+
+arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+ /* The filter length must be a multiple of the interpolation factor */
+ if ((numTaps % L) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign Interpolation factor */
+ S->L = L;
+
+ /* Assign polyPhaseLength */
+ S->phaseLength = numTaps / L;
+
+ /* Clear state buffer and size of buffer is always phaseLength + blockSize - 1 */
+ memset(pState, 0,
+ (blockSize + ((uint32_t) S->phaseLength - 1U)) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q31.c
new file mode 100644
index 0000000..9875aa8
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_init_q31.c
@@ -0,0 +1,109 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_init_q31.c
+ * Description: Q31 FIR interpolator initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+
+/**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}
+ * </pre>
+ * The length of the filter <code>numTaps</code> must be a multiple of the interpolation factor <code>L</code>.
+ * \par
+ * <code>pState</code> points to the array of state variables.
+ * <code>pState</code> is of length <code>(numTaps/L)+blockSize-1</code> words
+ * where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_interpolate_q31()</code>.
+ */
+
+arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize)
+{
+ arm_status status;
+
+ /* The filter length must be a multiple of the interpolation factor */
+ if ((numTaps % L) != 0U)
+ {
+ /* Set status as ARM_MATH_LENGTH_ERROR */
+ status = ARM_MATH_LENGTH_ERROR;
+ }
+ else
+ {
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign Interpolation factor */
+ S->L = L;
+
+ /* Assign polyPhaseLength */
+ S->phaseLength = numTaps / L;
+
+ /* Clear state buffer and size of buffer is always phaseLength + blockSize - 1 */
+ memset(pState, 0,
+ (blockSize + ((uint32_t) S->phaseLength - 1U)) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ status = ARM_MATH_SUCCESS;
+ }
+
+ return (status);
+
+}
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q15.c
new file mode 100644
index 0000000..1cedd25
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q15.c
@@ -0,0 +1,496 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_q15.c
+ * Description: Q15 FIR interpolation
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ q63_t sum0; /* Accumulators */
+ q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, j, tapCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
+ uint32_t blkCntN2;
+ q63_t acc0, acc1;
+ q15_t x1;
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
+
+ /* Initialise blkCnt */
+ blkCnt = blockSize / 2;
+ blkCntN2 = blockSize - (2 * blkCnt);
+
+ /* Samples loop unrolled by 2 */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = (S->L);
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2U;
+
+ x0 = *(ptr1++);
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 2);
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 3);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += 4 * S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* update states for next sample processing */
+ x0 = x1;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *(pDst + S->L) = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ pDst++;
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 2;
+
+ pDst += S->L;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blkCntN2;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2;
+ while (tapCnt > 0U)
+ {
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen & 0x3U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = ((uint32_t) phaseLen - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+#else
+
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = ((uint32_t) phaseLen - 1U) % 0x04U;
+
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ q63_t sum; /* Accumulator */
+ q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, tapCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (phaseLen - 1U);
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (i - 1U);
+
+ /* Loop over the polyPhase length */
+ tapCnt = (uint32_t) phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *ptr2;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *ptr1++;
+
+ /* Perform the multiply-accumulate */
+ sum += ((q31_t) x0 * c0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Store the result after converting to 1.15 format in the destination buffer */
+ *pDst++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (uint32_t) phaseLen - 1U;
+
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c
new file mode 100644
index 0000000..2c0f522
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c
@@ -0,0 +1,492 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_interpolate_q31.c
+ * Description: Q31 FIR interpolation
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>.
+ * since <code>numTaps/L</code> additions occur per output sample.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ q63_t sum0; /* Accumulators */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, j; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+ uint32_t blkCntN2;
+ q63_t acc0, acc1;
+ q31_t x1;
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
+
+ /* Initialise blkCnt */
+ blkCnt = blockSize / 2;
+ blkCntN2 = blockSize - (2 * blkCnt);
+
+ /* Samples loop unrolled by 2 */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = (S->L);
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2U;
+
+ x0 = *(ptr1++);
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 2);
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 3);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += 4 * S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* update states for next sample processing */
+ x0 = x1;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst = (q31_t) (acc0 >> 31);
+ *(pDst + S->L) = (q31_t) (acc1 >> 31);
+
+
+ pDst++;
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 2;
+
+ pDst += S->L;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blkCntN2;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1U;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2;
+ while (tapCnt > 0U)
+ {
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen & 0x3U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 >> 31);
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (phaseLen - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (phaseLen - 1U) % 0x04U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+
+#else
+
+void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+
+ /* Run the below code for Cortex-M0 */
+
+ q63_t sum; /* Accumulator */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (i - 1U);
+
+ tapCnt = phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *ptr1++;
+
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum >> 31);
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = phaseLen - 1U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /**
+ * @} end of FIR_Interpolate group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_f32.c
new file mode 100644
index 0000000..1b6d0fb
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_f32.c
@@ -0,0 +1,494 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_f32.c
+ * Description: Processing function for the floating-point FIR Lattice filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup FIR_Lattice Finite Impulse Response (FIR) Lattice Filters
+ *
+ * This set of functions implements Finite Impulse Response (FIR) lattice filters
+ * for Q15, Q31 and floating-point data types. Lattice filters are used in a
+ * variety of adaptive filter applications. The filter structure is feedforward and
+ * the net impulse response is finite length.
+ * The functions operate on blocks
+ * of input and output data and each call to the function processes
+ * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+ * <code>pDst</code> point to input and output arrays containing <code>blockSize</code> values.
+ *
+ * \par Algorithm:
+ * \image html FIRLattice.gif "Finite Impulse Response Lattice filter"
+ * The following difference equation is implemented:
+ * <pre>
+ * f0[n] = g0[n] = x[n]
+ * fm[n] = fm-1[n] + km * gm-1[n-1] for m = 1, 2, ...M
+ * gm[n] = km * fm-1[n] + gm-1[n-1] for m = 1, 2, ...M
+ * y[n] = fM[n]
+ * </pre>
+ * \par
+ * <code>pCoeffs</code> points to tha array of reflection coefficients of size <code>numStages</code>.
+ * Reflection Coefficients are stored in the following order.
+ * \par
+ * <pre>
+ * {k1, k2, ..., kM}
+ * </pre>
+ * where M is number of stages
+ * \par
+ * <code>pState</code> points to a state array of size <code>numStages</code>.
+ * The state variables (g values) hold previous inputs and are stored in the following order.
+ * <pre>
+ * {g0[n], g1[n], g2[n] ...gM-1[n]}
+ * </pre>
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numStages, pCoeffs, pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros and then manually initialize the instance structure as follows:
+ * <pre>
+ *arm_fir_lattice_instance_f32 S = {numStages, pState, pCoeffs};
+ *arm_fir_lattice_instance_q31 S = {numStages, pState, pCoeffs};
+ *arm_fir_lattice_instance_q15 S = {numStages, pState, pCoeffs};
+ * </pre>
+ * \par
+ * where <code>numStages</code> is the number of stages in the filter; <code>pState</code> is the address of the state buffer;
+ * <code>pCoeffs</code> is the address of the coefficient buffer.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the FIR Lattice filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *px; /* temporary state pointer */
+ float32_t *pk; /* temporary coefficient pointer */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ float32_t fcurr1, fnext1, gcurr1, gnext1; /* temporary variables for first sample in loop unrolling */
+ float32_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
+ float32_t fcurr3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
+ float32_t fcurr4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
+ uint32_t numStages = S->numStages; /* Number of stages in the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ gcurr1 = 0.0f;
+ pState = &S->pState[0];
+
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+
+ /* Read two samples from input buffer */
+ /* f0(n) = x(n) */
+ fcurr1 = *pSrc++;
+ fcurr2 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Read g0(n-1) from state */
+ gcurr1 = *px;
+
+ /* Process first sample for first tap */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (fcurr1 * (*pk)) + gcurr1;
+
+ /* Process second sample for first tap */
+ /* for sample 2 processing */
+ fnext2 = fcurr2 + ((*pk) * fcurr1);
+ gnext2 = (fcurr2 * (*pk)) + fcurr1;
+
+ /* Read next two samples from input buffer */
+ /* f0(n+2) = x(n+2) */
+ fcurr3 = *pSrc++;
+ fcurr4 = *pSrc++;
+
+ /* Copy only last input samples into the state buffer
+ which will be used for next four samples processing */
+ *px++ = fcurr4;
+
+ /* Process third sample for first tap */
+ fnext3 = fcurr3 + ((*pk) * fcurr2);
+ gnext3 = (fcurr3 * (*pk)) + fcurr2;
+
+ /* Process fourth sample for first tap */
+ fnext4 = fcurr4 + ((*pk) * fcurr3);
+ gnext4 = (fcurr4 * (*pk++)) + fcurr3;
+
+ /* Update of f values for next coefficient set processing */
+ fcurr1 = fnext1;
+ fcurr2 = fnext2;
+ fcurr3 = fnext3;
+ fcurr4 = fnext4;
+
+ /* Loop unrolling. Process 4 taps at a time . */
+ stageCnt = (numStages - 1U) >> 2U;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numStages-3 coefficients. */
+
+ /* Process 2nd, 3rd, 4th and 5th taps ... here */
+ while (stageCnt > 0U)
+ {
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurr1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext4;
+
+ /* Process first sample for 2nd, 6th .. tap */
+ /* Sample processing for K2, K6.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ /* Process second sample for 2nd, 6th .. tap */
+ /* for sample 2 processing */
+ fnext2 = fcurr2 + ((*pk) * gnext1);
+ /* Process third sample for 2nd, 6th .. tap */
+ fnext3 = fcurr3 + ((*pk) * gnext2);
+ /* Process fourth sample for 2nd, 6th .. tap */
+ fnext4 = fcurr4 + ((*pk) * gnext3);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (fcurr4 * (*pk)) + gnext3;
+ gnext3 = (fcurr3 * (*pk)) + gnext2;
+ gnext2 = (fcurr2 * (*pk)) + gnext1;
+ gnext1 = (fcurr1 * (*pk++)) + gcurr1;
+
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurr1 = *px;
+
+ /* save g2(n) in state buffer */
+ *px++ = gnext4;
+
+ /* Sample processing for K3, K7.... */
+ /* Process first sample for 3rd, 7th .. tap */
+ /* f3(n) = f2(n) + K3 * g2(n-1) */
+ fcurr1 = fnext1 + ((*pk) * gcurr1);
+ /* Process second sample for 3rd, 7th .. tap */
+ fcurr2 = fnext2 + ((*pk) * gnext1);
+ /* Process third sample for 3rd, 7th .. tap */
+ fcurr3 = fnext3 + ((*pk) * gnext2);
+ /* Process fourth sample for 3rd, 7th .. tap */
+ fcurr4 = fnext4 + ((*pk) * gnext3);
+
+ /* Calculation of state values for next stage */
+ /* g3(n) = f2(n) * K3 + g2(n-1) */
+ gnext4 = (fnext4 * (*pk)) + gnext3;
+ gnext3 = (fnext3 * (*pk)) + gnext2;
+ gnext2 = (fnext2 * (*pk)) + gnext1;
+ gnext1 = (fnext1 * (*pk++)) + gcurr1;
+
+
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurr1 = *px;
+
+ /* save g3(n) in state buffer */
+ *px++ = gnext4;
+
+ /* Sample processing for K4, K8.... */
+ /* Process first sample for 4th, 8th .. tap */
+ /* f4(n) = f3(n) + K4 * g3(n-1) */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ /* Process second sample for 4th, 8th .. tap */
+ /* for sample 2 processing */
+ fnext2 = fcurr2 + ((*pk) * gnext1);
+ /* Process third sample for 4th, 8th .. tap */
+ fnext3 = fcurr3 + ((*pk) * gnext2);
+ /* Process fourth sample for 4th, 8th .. tap */
+ fnext4 = fcurr4 + ((*pk) * gnext3);
+
+ /* g4(n) = f3(n) * K4 + g3(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (fcurr4 * (*pk)) + gnext3;
+ gnext3 = (fcurr3 * (*pk)) + gnext2;
+ gnext2 = (fcurr2 * (*pk)) + gnext1;
+ gnext1 = (fcurr1 * (*pk++)) + gcurr1;
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurr1 = *px;
+
+ /* save g4(n) in state buffer */
+ *px++ = gnext4;
+
+ /* Sample processing for K5, K9.... */
+ /* Process first sample for 5th, 9th .. tap */
+ /* f5(n) = f4(n) + K5 * g4(n-1) */
+ fcurr1 = fnext1 + ((*pk) * gcurr1);
+ /* Process second sample for 5th, 9th .. tap */
+ fcurr2 = fnext2 + ((*pk) * gnext1);
+ /* Process third sample for 5th, 9th .. tap */
+ fcurr3 = fnext3 + ((*pk) * gnext2);
+ /* Process fourth sample for 5th, 9th .. tap */
+ fcurr4 = fnext4 + ((*pk) * gnext3);
+
+ /* Calculation of state values for next stage */
+ /* g5(n) = f4(n) * K5 + g4(n-1) */
+ gnext4 = (fnext4 * (*pk)) + gnext3;
+ gnext3 = (fnext3 * (*pk)) + gnext2;
+ gnext2 = (fnext2 * (*pk)) + gnext1;
+ gnext1 = (fnext1 * (*pk++)) + gcurr1;
+
+ stageCnt--;
+ }
+
+ /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
+ stageCnt = (numStages - 1U) % 0x4U;
+
+ while (stageCnt > 0U)
+ {
+ gcurr1 = *px;
+
+ /* save g value in state buffer */
+ *px++ = gnext4;
+
+ /* Process four samples for last three taps here */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ fnext2 = fcurr2 + ((*pk) * gnext1);
+ fnext3 = fcurr3 + ((*pk) * gnext2);
+ fnext4 = fcurr4 + ((*pk) * gnext3);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext4 = (fcurr4 * (*pk)) + gnext3;
+ gnext3 = (fcurr3 * (*pk)) + gnext2;
+ gnext2 = (fcurr2 * (*pk)) + gnext1;
+ gnext1 = (fcurr1 * (*pk++)) + gcurr1;
+
+ /* Update of f values for next coefficient set processing */
+ fcurr1 = fnext1;
+ fcurr2 = fnext2;
+ fcurr3 = fnext3;
+ fcurr4 = fnext4;
+
+ stageCnt--;
+
+ }
+
+ /* The results in the 4 accumulators, store in the destination buffer. */
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr1;
+ *pDst++ = fcurr2;
+ *pDst++ = fcurr3;
+ *pDst++ = fcurr4;
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr1 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g2(n) from state buffer */
+ gcurr1 = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (fcurr1 * (*pk++)) + gcurr1;
+
+ /* save g1(n) in state buffer */
+ *px++ = fcurr1;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurr1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext1;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = fcurr1 + ((*pk) * gcurr1);
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext1 = (fcurr1 * (*pk++)) + gcurr1;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr1;
+
+ blkCnt--;
+
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t fcurr, fnext, gcurr, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = pCoeffs;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurr = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = fcurr + ((*pk) * gcurr);
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = (fcurr * (*pk++)) + gcurr;
+
+ /* save f0(n) in state buffer */
+ *px++ = fcurr;
+
+ /* f1(n) is saved in fcurr
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurr = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = fcurr + ((*pk) * gcurr);
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = (fcurr * (*pk++)) + gcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr;
+
+ blkCnt--;
+
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_f32.c
new file mode 100644
index 0000000..55520eb
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_f32.c
@@ -0,0 +1,71 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_init_f32.c
+ * Description: Floating-point FIR Lattice filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always numStages */
+ memset(pState, 0, (numStages) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q15.c
new file mode 100644
index 0000000..59cf496
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q15.c
@@ -0,0 +1,71 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_init_q15.c
+ * Description: Q15 FIR Lattice filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always numStages */
+ memset(pState, 0, (numStages) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q31.c
new file mode 100644
index 0000000..abdd76f
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_init_q31.c
@@ -0,0 +1,71 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_init_q31.c
+ * Description: Q31 FIR lattice filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always numStages */
+ memset(pState, 0, (numStages) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q15.c
new file mode 100644
index 0000000..fb95ab6
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q15.c
@@ -0,0 +1,524 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_q15.c
+ * Description: Q15 FIR lattice filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+
+/**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* temporary state pointer */
+ q15_t *pk; /* temporary coefficient pointer */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t fcurnt1, fnext1, gcurnt1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
+ q31_t fcurnt2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
+ q31_t fcurnt3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
+ q31_t fcurnt4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
+ uint32_t numStages = S->numStages; /* Number of stages in the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+
+ /* Read two samples from input buffer */
+ /* f0(n) = x(n) */
+ fcurnt1 = *pSrc++;
+ fcurnt2 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Read g0(n-1) from state */
+ gcurnt1 = *px;
+
+ /* Process first sample for first tap */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (q31_t) ((fcurnt1 * (*pk)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Process second sample for first tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((fcurnt1 * (*pk)) >> 15U) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + fcurnt1;
+ gnext2 = __SSAT(gnext2, 16);
+
+
+ /* Read next two samples from input buffer */
+ /* f0(n+2) = x(n+2) */
+ fcurnt3 = *pSrc++;
+ fcurnt4 = *pSrc++;
+
+ /* Copy only last input samples into the state buffer
+ which is used for next four samples processing */
+ *px++ = (q15_t) fcurnt4;
+
+ /* Process third sample for first tap */
+ fnext3 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + fcurnt2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ /* Process fourth sample for first tap */
+ fnext4 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+ gnext4 = (q31_t) ((fcurnt4 * (*pk++)) >> 15U) + fcurnt3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ /* Update of f values for next coefficient set processing */
+ fcurnt1 = fnext1;
+ fcurnt2 = fnext2;
+ fcurnt3 = fnext3;
+ fcurnt4 = fnext4;
+
+
+ /* Loop unrolling. Process 4 taps at a time . */
+ stageCnt = (numStages - 1U) >> 2;
+
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numStages-3 coefficients. */
+
+ /* Process 2nd, 3rd, 4th and 5th taps ... here */
+ while (stageCnt > 0U)
+ {
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Process first sample for 2nd, 6th .. tap */
+ /* Sample processing for K2, K6.... */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+
+ /* Process second sample for 2nd, 6th .. tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+ /* Process third sample for 2nd, 6th .. tap */
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+ /* Process fourth sample for 2nd, 6th .. tap */
+ /* fnext4 = fcurnt4 + (*pk) * gnext3; */
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K3, K7.... */
+ /* Process first sample for 3rd, 7th .. tap */
+ /* f3(n) = f2(n) + K3 * g2(n-1) */
+ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fnext1;
+ fcurnt1 = __SSAT(fcurnt1, 16);
+
+ /* Process second sample for 3rd, 7th .. tap */
+ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
+ fcurnt2 = __SSAT(fcurnt2, 16);
+
+ /* Process third sample for 3rd, 7th .. tap */
+ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
+ fcurnt3 = __SSAT(fcurnt3, 16);
+
+ /* Process fourth sample for 3rd, 7th .. tap */
+ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fnext4;
+ fcurnt4 = __SSAT(fcurnt4, 16);
+
+ /* Calculation of state values for next stage */
+ /* g3(n) = f2(n) * K3 + g2(n-1) */
+ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15U) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+
+ gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K4, K8.... */
+ /* Process first sample for 4th, 8th .. tap */
+ /* f4(n) = f3(n) + K4 * g3(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* Process second sample for 4th, 8th .. tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ /* Process third sample for 4th, 8th .. tap */
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+
+ /* Process fourth sample for 4th, 8th .. tap */
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g4(n) = f3(n) * K4 + g3(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g4(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K5, K9.... */
+ /* Process first sample for 5th, 9th .. tap */
+ /* f5(n) = f4(n) + K5 * g4(n-1) */
+ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fnext1;
+ fcurnt1 = __SSAT(fcurnt1, 16);
+
+ /* Process second sample for 5th, 9th .. tap */
+ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fnext2;
+ fcurnt2 = __SSAT(fcurnt2, 16);
+
+ /* Process third sample for 5th, 9th .. tap */
+ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fnext3;
+ fcurnt3 = __SSAT(fcurnt3, 16);
+
+ /* Process fourth sample for 5th, 9th .. tap */
+ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fnext4;
+ fcurnt4 = __SSAT(fcurnt4, 16);
+
+ /* Calculation of state values for next stage */
+ /* g5(n) = f4(n) * K5 + g4(n-1) */
+ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15U) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15U) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+ gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15U) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ stageCnt--;
+ }
+
+ /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
+ stageCnt = (numStages - 1U) % 0x4U;
+
+ while (stageCnt > 0U)
+ {
+ gcurnt1 = *px;
+
+ /* save g value in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Process four samples for last three taps here */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15U) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15U) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15U) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15U) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15U) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15U) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Update of f values for next coefficient set processing */
+ fcurnt1 = fnext1;
+ fcurnt2 = fnext2;
+ fcurnt3 = fnext3;
+ fcurnt4 = fnext4;
+
+ stageCnt--;
+
+ }
+
+ /* The results in the 4 accumulators, store in the destination buffer. */
+ /* y(n) = fN(n) */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt1, fcurnt2, 16);
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt3, fcurnt4, 16);
+
+#else
+
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt2, fcurnt1, 16);
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt4, fcurnt3, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurnt1 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g2(n) from state buffer */
+ gcurnt1 = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) fcurnt1;
+
+ /* f1(n) is saved in fcurnt1
+ for next stage processing */
+ fcurnt1 = fnext1;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext1;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15U) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15U) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* f1(n) is saved in fcurnt1
+ for next stage processing */
+ fcurnt1 = fnext1;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = __SSAT(fcurnt1, 16);
+
+
+ blkCnt--;
+
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurnt = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
+ fnext = __SSAT(fnext, 16);
+
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
+ gnext = __SSAT(gnext, 16);
+
+ /* save f0(n) in state buffer */
+ *px++ = (q15_t) fcurnt;
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g1(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* save g0(n-1) in state buffer */
+ *px++ = (q15_t) gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
+ fnext = __SSAT(fnext, 16);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
+ gnext = __SSAT(gnext, 16);
+
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = __SSAT(fcurnt, 16);
+
+
+ blkCnt--;
+
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q31.c
new file mode 100644
index 0000000..9d52bbc
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_q31.c
@@ -0,0 +1,341 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_lattice_q31.c
+ * Description: Q31 FIR lattice filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+
+/**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ * In order to avoid overflows the input signal must be scaled down by 2*log2(numStages) bits.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *px; /* temporary state pointer */
+ q31_t *pk; /* temporary coefficient pointer */
+ q31_t fcurr1, fnext1, gcurr1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
+ q31_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+ q31_t k;
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize >> 1U;
+
+ /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
+ a second loop below computes the remaining 1 sample. */
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr1 = *pSrc++;
+
+ /* f0(n) = x(n) */
+ fcurr2 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n - 1) from state buffer */
+ gcurr1 = *px;
+
+ /* Read the reflection coefficient */
+ k = *pk++;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
+ fnext1 = fcurr1 + (fnext1 << 1U);
+ gnext1 = gcurr1 + (gnext1 << 1U);
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext2 = (q31_t) (((q63_t) fcurr1 * k) >> 32);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
+ fnext2 = fcurr2 + (fnext2 << 1U);
+ gnext2 = fcurr1 + (gnext2 << 1U);
+
+ /* save g1(n) in state buffer */
+ *px++ = fcurr2;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+ fcurr2 = fnext2;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+
+ /* Read the reflection coefficient */
+ k = *pk++;
+
+ /* read g2(n) from state buffer */
+ gcurr1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext2;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
+ fnext2 = (q31_t) (((q63_t) gnext1 * k) >> 32);
+
+ fnext1 = fcurr1 + (fnext1 << 1U);
+ fnext2 = fcurr2 + (fnext2 << 1U);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext2 = (q31_t) (((q63_t) fcurr2 * (k)) >> 32);
+ gnext2 = gnext1 + (gnext2 << 1U);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
+ gnext1 = gcurr1 + (gnext1 << 1U);
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+ fcurr2 = fnext2;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr1;
+ *pDst++ = fcurr2;
+
+ blkCnt--;
+
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x2U;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr1 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n - 1) from state buffer */
+ gcurr1 = *px;
+
+ /* Read the reflection coefficient */
+ k = *pk++;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
+ fnext1 = fcurr1 + (fnext1 << 1U);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
+ gnext1 = gcurr1 + (gnext1 << 1U);
+
+ /* save g1(n) in state buffer */
+ *px++ = fcurr1;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* Read the reflection coefficient */
+ k = *pk++;
+
+ /* read g2(n) from state buffer */
+ gcurr1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext1;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = (q31_t) (((q63_t) gcurr1 * k) >> 32);
+ fnext1 = fcurr1 + (fnext1 << 1U);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext1 = (q31_t) (((q63_t) fcurr1 * (k)) >> 32);
+ gnext1 = gcurr1 + (gnext1 << 1U);
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr1 = fnext1;
+
+ stageCnt--;
+
+ }
+
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr1;
+
+ blkCnt--;
+
+ }
+
+
+}
+
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *px; /* temporary state pointer */
+ q31_t *pk; /* temporary coefficient pointer */
+ q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurr = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
+ /* save g1(n) in state buffer */
+ *px++ = fcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurr = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr;
+
+ blkCnt--;
+
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+/**
+ * @} end of FIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q15.c
new file mode 100644
index 0000000..a979783
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q15.c
@@ -0,0 +1,679 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_q15.c
+ * Description: Q15 FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] *S points to an instance of the Q15 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, state buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+
+void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px1; /* Temporary q15 pointer for state buffer */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
+ q63_t acc0, acc1, acc2, acc3; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer.
+ ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Initialize state pointer of type q15 */
+ px1 = pState;
+
+ /* Initialize coeff pointer of type q31 */
+ pb = pCoeffs;
+
+ /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
+ x0 = _SIMD32_OFFSET(px1);
+
+ /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
+ x1 = _SIMD32_OFFSET(px1 + 1U);
+
+ px1 += 2U;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Read state x[n-N-2], x[n-N-3] */
+ x2 = _SIMD32_OFFSET(px1);
+
+ /* Read state x[n-N-3], x[n-N-4] */
+ x3 = _SIMD32_OFFSET(px1 + 1U);
+
+ /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
+ acc2 = __SMLALD(x2, c0, acc2);
+
+ /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
+ acc3 = __SMLALD(x3, c0, acc3);
+
+ /* Read coefficients b[N-2], b[N-3] */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
+ acc0 = __SMLALD(x2, c0, acc0);
+
+ /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
+ acc1 = __SMLALD(x3, c0, acc1);
+
+ /* Read state x[n-N-4], x[n-N-5] */
+ x0 = _SIMD32_OFFSET(px1 + 2U);
+
+ /* Read state x[n-N-5], x[n-N-6] */
+ x1 = _SIMD32_OFFSET(px1 + 3U);
+
+ /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
+ acc2 = __SMLALD(x0, c0, acc2);
+
+ /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
+ acc3 = __SMLALD(x1, c0, acc3);
+
+ px1 += 4U;
+
+ tapCnt--;
+
+ }
+
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps.
+ ** This is always be 2 taps since the filter length is even. */
+ if ((numTaps & 0x3U) != 0U)
+ {
+ /* Read 2 coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Fetch 4 state variables */
+ x2 = _SIMD32_OFFSET(px1);
+
+ x3 = _SIMD32_OFFSET(px1 + 1U);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ px1 += 2U;
+
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALD(x2, c0, acc2);
+ acc3 = __SMLALD(x3, c0, acc3);
+ }
+
+ /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the 4 outputs in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 4;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+ while (blkCnt > 0U)
+ {
+ /* Copy two samples into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Initialize state pointer of type q15 */
+ px1 = pState;
+
+ /* Initialize coeff pointer of type q31 */
+ pb = pCoeffs;
+
+ tapCnt = numTaps >> 1;
+
+ do
+ {
+
+ c0 = *__SIMD32(pb)++;
+ x0 = *__SIMD32(px1)++;
+
+ acc0 = __SMLALD(x0, c0, acc0);
+ tapCnt--;
+ }
+ while (tapCnt > 0U);
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculation of count for copying integer writes */
+ tapCnt = (numTaps - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Copy state values to start of state buffer */
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+ tapCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* copy remaining data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#else /* UNALIGNED_SUPPORT_DISABLE */
+
+void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q63_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
+ q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer.
+ ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
+ px = pState;
+
+ /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
+ pb = pCoeffs;
+
+ /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
+ x2 = *__SIMD32(px)++;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0)
+ {
+ /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
+ acc2 = __SMLALD(x2, c0, acc2);
+
+ /* pack x[n-N-1] and x[n-N-2] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* Read state x[n-N-4], x[n-N-5] */
+ x0 = _SIMD32_OFFSET(px);
+
+ /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* pack x[n-N-3] and x[n-N-4] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x0, x2, 0);
+#else
+ x1 = __PKHBT(x2, x0, 0);
+#endif
+
+ /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
+ acc3 = __SMLALDX(x1, c0, acc3);
+
+ /* Read coefficients b[N-2], b[N-3] */
+ c0 = *__SIMD32(pb)++;
+
+ /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
+ acc0 = __SMLALD(x2, c0, acc0);
+
+ /* Read state x[n-N-6], x[n-N-7] with offset */
+ x2 = _SIMD32_OFFSET(px + 2U);
+
+ /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
+ acc2 = __SMLALD(x0, c0, acc2);
+
+ /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* pack x[n-N-5] and x[n-N-6] */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
+ acc3 = __SMLALDX(x1, c0, acc3);
+
+ /* Update state pointer for next state reading */
+ px += 4U;
+
+ /* Decrement tap count */
+ tapCnt--;
+
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps.
+ ** This is always be 2 taps since the filter length is even. */
+ if ((numTaps & 0x3U) != 0U)
+ {
+
+ /* Read last two coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc2 = __SMLALD(x2, c0, acc2);
+
+ /* pack state variables */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x2, x0, 0);
+#else
+ x1 = __PKHBT(x0, x2, 0);
+#endif
+
+ /* Read last state variables */
+ x0 = *__SIMD32(px);
+
+ /* Perform the multiply-accumulates */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* pack state variables */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(x0, x2, 0);
+#else
+ x1 = __PKHBT(x2, x0, 0);
+#endif
+
+ /* Perform the multiply-accumulates */
+ acc3 = __SMLALDX(x1, c0, acc3);
+ }
+
+ /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the 4 outputs in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+
+ *__SIMD32(pDst)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 4;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+ while (blkCnt > 0U)
+ {
+ /* Copy two samples into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Use SIMD to hold states and coefficients */
+ px = pState;
+ pb = pCoeffs;
+
+ tapCnt = numTaps >> 1U;
+
+ do
+ {
+ acc0 += (q31_t) * px++ * *pb++;
+ acc0 += (q31_t) * px++ * *pb++;
+ tapCnt--;
+ }
+ while (tapCnt > 0U);
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculation of count for copying integer writes */
+ tapCnt = (numTaps - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ tapCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* copy remaining data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#else /* ARM_MATH_CM0_FAMILY */
+
+
+/* Run the below code for Cortex-M0 */
+
+void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+
+
+
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ q63_t acc; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Initialize blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ tapCnt = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += (q31_t) * px++ * *pb++;
+ tapCnt--;
+ } while (tapCnt > 0U);
+
+ /* The result is in 2.30 format. Convert to 1.15
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q15_t) __SSAT((acc >> 15U), 16);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ tapCnt = (numTaps - 1U);
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q31.c
new file mode 100644
index 0000000..b0a2723
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q31.c
@@ -0,0 +1,353 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_q31.c
+ * Description: Q31 FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @param[in] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
+ */
+
+void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t x0, x1, x2; /* Temporary variables to hold state */
+ q31_t c0; /* Temporary variable to hold coefficient value */
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ q63_t acc0, acc1, acc2; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize / 3;
+ blockSize = blockSize - (3 * blkCnt);
+
+ tapCnt = numTaps / 3;
+ tapCntN3 = numTaps - (3 * tapCnt);
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy three new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Read the first two samples from the state buffer:
+ * x[n-numTaps], x[n-numTaps-1] */
+ x0 = *(px++);
+ x1 = *(px++);
+
+ /* Loop unrolling. Process 3 taps at a time. */
+ i = tapCnt;
+
+ while (i > 0U)
+ {
+ /* Read the b[numTaps] coefficient */
+ c0 = *pb;
+
+ /* Read x[n-numTaps-2] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q63_t) x0 * c0);
+ acc1 += ((q63_t) x1 * c0);
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Read the coefficient and state */
+ c0 = *(pb + 1U);
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q63_t) x1 * c0);
+ acc1 += ((q63_t) x2 * c0);
+ acc2 += ((q63_t) x0 * c0);
+
+ /* Read the coefficient and state */
+ c0 = *(pb + 2U);
+ x1 = *(px++);
+
+ /* update coefficient pointer */
+ pb += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q63_t) x2 * c0);
+ acc1 += ((q63_t) x0 * c0);
+ acc2 += ((q63_t) x1 * c0);
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* If the filter length is not a multiple of 3, compute the remaining filter taps */
+
+ i = tapCntN3;
+
+ while (i > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q63_t) x0 * c0);
+ acc1 += ((q63_t) x1 * c0);
+ acc2 += ((q63_t) x2 * c0);
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 3 to process the next group of 3 samples */
+ pState = pState + 3;
+
+ /* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
+ ** Then store the 3 outputs in the destination buffer. */
+ *pDst++ = (q31_t) (acc0 >> 31U);
+ *pDst++ = (q31_t) (acc1 >> 31U);
+ *pDst++ = (q31_t) (acc2 >> 31U);
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 3, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += (q63_t) * (px++) * (*(pb++));
+ i--;
+ } while (i > 0U);
+
+ /* The result is in 2.62 format. Convert to 1.31
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q31_t) (acc0 >> 31U);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the samples loop counter */
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ q63_t acc; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Length of the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Initialize blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += (q63_t) * px++ * *pb++;
+ i--;
+ } while (i > 0U);
+
+ /* The result is in 2.62 format. Convert to 1.31
+ ** Then store the output in the destination buffer. */
+ *pDst++ = (q31_t) (acc >> 31U);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ tapCnt = numTaps - 1U;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q7.c
new file mode 100644
index 0000000..4f795d7
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q7.c
@@ -0,0 +1,385 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_q7.c
+ * Description: Q7 FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR
+ * @{
+ */
+
+/**
+ * @param[in] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * The accumulator is converted to 18.7 format by discarding the low 7 bits.
+ * Finally, the result is truncated to 1.7 format.
+ */
+
+void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize)
+{
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q7_t *pState = S->pState; /* State pointer */
+ q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q7_t *pStateCurnt; /* Points to the current sample of the state */
+ q7_t x0, x1, x2, x3; /* Temporary variables to hold state */
+ q7_t c0; /* Temporary variable to hold coefficient value */
+ q7_t *px; /* Temporary pointer for state */
+ q7_t *pb; /* Temporary pointer for coefficient buffer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Apply loop unrolling and compute 4 output values simultaneously.
+ * The variables acc0 ... acc3 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Read the first three samples from the state buffer:
+ * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+ i = tapCnt;
+
+ while (i > 0U)
+ {
+ /* Read the b[numTaps] coefficient */
+ c0 = *pb;
+
+ /* Read x[n-numTaps-3] sample */
+ x3 = *px;
+
+ /* acc0 += b[numTaps] * x[n-numTaps] */
+ acc0 += ((q15_t) x0 * c0);
+
+ /* acc1 += b[numTaps] * x[n-numTaps-1] */
+ acc1 += ((q15_t) x1 * c0);
+
+ /* acc2 += b[numTaps] * x[n-numTaps-2] */
+ acc2 += ((q15_t) x2 * c0);
+
+ /* acc3 += b[numTaps] * x[n-numTaps-3] */
+ acc3 += ((q15_t) x3 * c0);
+
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb + 1U);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q15_t) x1 * c0);
+ acc1 += ((q15_t) x2 * c0);
+ acc2 += ((q15_t) x3 * c0);
+ acc3 += ((q15_t) x0 * c0);
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb + 2U);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q15_t) x2 * c0);
+ acc1 += ((q15_t) x3 * c0);
+ acc2 += ((q15_t) x0 * c0);
+ acc3 += ((q15_t) x1 * c0);
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *(pb + 3U);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px + 3U);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q15_t) x3 * c0);
+ acc1 += ((q15_t) x0 * c0);
+ acc2 += ((q15_t) x1 * c0);
+ acc3 += ((q15_t) x2 * c0);
+
+ /* update coefficient pointer */
+ pb += 4U;
+ px += 4U;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+
+ i = numTaps - (tapCnt * 4U);
+ while (i > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += ((q15_t) x0 * c0);
+ acc1 += ((q15_t) x1 * c0);
+ acc2 += ((q15_t) x2 * c0);
+ acc3 += ((q15_t) x3 * c0);
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 4;
+
+ /* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
+ ** Then store the 4 outputs in the destination buffer. */
+ acc0 = __SSAT((acc0 >> 7U), 8);
+ *pDst++ = acc0;
+ acc1 = __SSAT((acc1 >> 7U), 8);
+ *pDst++ = acc1;
+ acc2 = __SSAT((acc2 >> 7U), 8);
+ *pDst++ = acc2;
+ acc3 = __SSAT((acc3 >> 7U), 8);
+ *pDst++ = acc3;
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += (q15_t) * (px++) * (*(pb++));
+ i--;
+ } while (i > 0U);
+
+ /* The result is in 2.14 format. Convert to 1.7
+ ** Then store the output in the destination buffer. */
+ *pDst++ = __SSAT((acc0 >> 7U), 8);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the samples loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+ q7_t *pState = S->pState; /* State pointer */
+ q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q7_t *px, *pb; /* Temporary pointers to state and coeff */
+ q31_t acc = 0; /* Accumlator */
+ q7_t *pStateCurnt; /* Points to the current sample of the state */
+
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+ /* Initialize blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ /* Perform filtering upto BlockSize - BlockSize%4 */
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set accumulator to zero */
+ acc = 0;
+
+ /* Initialize state pointer of type q7 */
+ px = pState;
+
+ /* Initialize coeff pointer of type q7 */
+ pb = pCoeffs;
+
+
+ i = numTaps;
+
+ while (i > 0U)
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += (q15_t) * px++ * *pb++;
+ i--;
+ }
+
+ /* Store the 1.7 format filter output in destination buffer */
+ *pDst++ = (q7_t) __SSAT((acc >> 7), 8);
+
+ /* Advance the state pointer by 1 to process the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+
+ /* Copy numTaps number of values */
+ i = (numTaps - 1U);
+
+ /* Copy q7_t data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ i--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
new file mode 100644
index 0000000..fe9aacd
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
@@ -0,0 +1,433 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_f32.c
+ * Description: Floating-point sparse FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup FIR_Sparse Finite Impulse Response (FIR) Sparse Filters
+ *
+ * This group of functions implements sparse FIR filters.
+ * Sparse FIR filters are equivalent to standard FIR filters except that most of the coefficients are equal to zero.
+ * Sparse filters are used for simulating reflections in communications and audio applications.
+ *
+ * There are separate functions for Q7, Q15, Q31, and floating-point data types.
+ * The functions operate on blocks of input and output data and each call to the function processes
+ * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+ * <code>pDst</code> points to input and output arrays respectively containing <code>blockSize</code> values.
+ *
+ * \par Algorithm:
+ * The sparse filter instant structure contains an array of tap indices <code>pTapDelay</code> which specifies the locations of the non-zero coefficients.
+ * This is in addition to the coefficient array <code>b</code>.
+ * The implementation essentially skips the multiplications by zero and leads to an efficient realization.
+ * <pre>
+ * y[n] = b[0] * x[n-pTapDelay[0]] + b[1] * x[n-pTapDelay[1]] + b[2] * x[n-pTapDelay[2]] + ...+ b[numTaps-1] * x[n-pTapDelay[numTaps-1]]
+ * </pre>
+ * \par
+ * \image html FIRSparse.gif "Sparse FIR filter. b[n] represents the filter coefficients"
+ * \par
+ * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>;
+ * <code>pTapDelay</code> points to an array of nonzero indices and is also of size <code>numTaps</code>;
+ * <code>pState</code> points to a state array of size <code>maxDelay + blockSize</code>, where
+ * <code>maxDelay</code> is the largest offset value that is ever used in the <code>pTapDelay</code> array.
+ * Some of the processing functions also require temporary working buffers.
+ *
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient and offset arrays may be shared among several instances while state variable arrays cannot be shared.
+ * There are separate instance structure declarations for each of the 4 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numTaps, pCoeffs, pTapDelay, maxDelay, stateIndex, pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros before static initialization.
+ * The code below statically initializes each of the 4 different data type filter instance structures
+ * <pre>
+ *arm_fir_sparse_instance_f32 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
+ *arm_fir_sparse_instance_q31 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
+ *arm_fir_sparse_instance_q15 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
+ *arm_fir_sparse_instance_q7 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
+ * </pre>
+ * \par
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the sparse FIR filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize)
+{
+
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *px; /* Scratch buffer pointer */
+ float32_t *py = pState; /* Temporary pointers for state buffer */
+ float32_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ float32_t *pOut; /* Destination pointer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ float32_t coeff = *pCoeffs++; /* Read the first coefficient value */
+
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
+ (int32_t *) pSrc, 1, blockSize);
+
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 Multiplications at a time. */
+ blkCnt = blockSize >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in destination buffer */
+ *pOut++ = *px++ * coeff;
+ *pOut++ = *px++ * coeff;
+ *pOut++ = *px++ * coeff;
+ *pOut++ = *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in destination buffer */
+ *pOut++ = *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex -
+ (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in destination buffer */
+ *pOut++ = *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex =
+ ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_f32.c
new file mode 100644
index 0000000..191f8bb
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_f32.c
@@ -0,0 +1,95 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_init_f32.c
+ * Description: Floating-point sparse FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> holds the filter coefficients and has length <code>numTaps</code>.
+ * <code>pState</code> holds the filter's state variables and must be of length
+ * <code>maxDelay + blockSize</code>, where <code>maxDelay</code>
+ * is the maximum number of delay line values.
+ * <code>blockSize</code> is the
+ * number of samples processed by the <code>arm_fir_sparse_f32()</code> function.
+ */
+
+void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign TapDelay pointer */
+ S->pTapDelay = pTapDelay;
+
+ /* Assign MaxDelay */
+ S->maxDelay = maxDelay;
+
+ /* reset the stateIndex to 0 */
+ S->stateIndex = 0U;
+
+ /* Clear state buffer and size is always maxDelay + blockSize */
+ memset(pState, 0, (maxDelay + blockSize) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q15.c
new file mode 100644
index 0000000..297c5fa
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q15.c
@@ -0,0 +1,95 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_init_q15.c
+ * Description: Q15 sparse FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> holds the filter coefficients and has length <code>numTaps</code>.
+ * <code>pState</code> holds the filter's state variables and must be of length
+ * <code>maxDelay + blockSize</code>, where <code>maxDelay</code>
+ * is the maximum number of delay line values.
+ * <code>blockSize</code> is the
+ * number of words processed by <code>arm_fir_sparse_q15()</code> function.
+ */
+
+void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign TapDelay pointer */
+ S->pTapDelay = pTapDelay;
+
+ /* Assign MaxDelay */
+ S->maxDelay = maxDelay;
+
+ /* reset the stateIndex to 0 */
+ S->stateIndex = 0U;
+
+ /* Clear state buffer and size is always maxDelay + blockSize */
+ memset(pState, 0, (maxDelay + blockSize) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q31.c
new file mode 100644
index 0000000..3eb8d47
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q31.c
@@ -0,0 +1,94 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_init_q31.c
+ * Description: Q31 sparse FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> holds the filter coefficients and has length <code>numTaps</code>.
+ * <code>pState</code> holds the filter's state variables and must be of length
+ * <code>maxDelay + blockSize</code>, where <code>maxDelay</code>
+ * is the maximum number of delay line values.
+ * <code>blockSize</code> is the number of words processed by <code>arm_fir_sparse_q31()</code> function.
+ */
+
+void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign TapDelay pointer */
+ S->pTapDelay = pTapDelay;
+
+ /* Assign MaxDelay */
+ S->maxDelay = maxDelay;
+
+ /* reset the stateIndex to 0 */
+ S->stateIndex = 0U;
+
+ /* Clear state buffer and size is always maxDelay + blockSize */
+ memset(pState, 0, (maxDelay + blockSize) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q7.c
new file mode 100644
index 0000000..c2cb7b0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_init_q7.c
@@ -0,0 +1,95 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_init_q7.c
+ * Description: Q7 sparse FIR filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> holds the filter coefficients and has length <code>numTaps</code>.
+ * <code>pState</code> holds the filter's state variables and must be of length
+ * <code>maxDelay + blockSize</code>, where <code>maxDelay</code>
+ * is the maximum number of delay line values.
+ * <code>blockSize</code> is the
+ * number of samples processed by the <code>arm_fir_sparse_q7()</code> function.
+ */
+
+void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Assign TapDelay pointer */
+ S->pTapDelay = pTapDelay;
+
+ /* Assign MaxDelay */
+ S->maxDelay = maxDelay;
+
+ /* reset the stateIndex to 0 */
+ S->stateIndex = 0U;
+
+ /* Clear state buffer and size is always maxDelay + blockSize */
+ memset(pState, 0, (maxDelay + blockSize) * sizeof(q7_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q15.c
new file mode 100644
index 0000000..663b6e0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q15.c
@@ -0,0 +1,470 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_q15.c
+ * Description: Q15 sparse FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The 1.15 x 1.15 multiplications yield a 2.30 result and these are added to a 2.30 accumulator.
+ * Thus the full precision of the multiplications is maintained but there is only a single guard bit in the accumulator.
+ * If the accumulator result overflows it will wrap around rather than saturate.
+ * After all multiply-accumulates are performed, the 2.30 accumulator is truncated to 2.15 format and then saturated to 1.15 format.
+ * In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.
+ */
+
+
+void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize)
+{
+
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pIn = pSrc; /* Working pointer for input */
+ q15_t *pOut = pDst; /* Working pointer for output */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* Temporary pointers for scratch buffer */
+ q15_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q15_t *py = pState; /* Temporary pointers for state buffer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q15_t coeff = *pCoeffs++; /* Read the first coefficient value */
+ q31_t *pScr2 = pScratchOut; /* Working pointer for pScratchOut */
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t in1, in2; /* Temporary variables */
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 multiplications at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ in1 = *pScr2++;
+ in2 = *pScr2++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
+ 16);
+
+#else
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
+ 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ in1 = *pScr2++;
+
+ in2 = *pScr2++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
+ 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
+ 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ blkCnt--;
+
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ remaining samples are processed in the below loop */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
+ blkCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
+ blkCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q31.c
new file mode 100644
index 0000000..3fd3da0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q31.c
@@ -0,0 +1,450 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_q31.c
+ * Description: Q31 sparse FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The 1.31 x 1.31 multiplications are truncated to 2.30 format.
+ * This leads to loss of precision on the intermediate multiplications and provides only a single guard bit.
+ * If the accumulator result overflows, it wraps around rather than saturate.
+ * In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.
+ */
+
+void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize)
+{
+
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *px; /* Scratch buffer pointer */
+ q31_t *py = pState; /* Temporary pointers for state buffer */
+ q31_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q31_t *pOut; /* Destination pointer */
+ q63_t out; /* Temporary output variable */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q31_t coeff = *pCoeffs++; /* Read the first coefficient value */
+ q31_t in;
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
+ (int32_t *) pSrc, 1, blockSize);
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 Multiplications at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in the destination buffer */
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in the destination buffer */
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Working output pointer is updated */
+ pOut = pDst;
+
+ /* Output is converted into 1.31 format. */
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * process 4 output samples at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ in = *pOut << 1;
+ *pOut++ = in;
+ in = *pOut << 1;
+ *pOut++ = in;
+ in = *pOut << 1;
+ *pOut++ = in;
+ in = *pOut << 1;
+ *pOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * process the remaining output samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ in = *pOut << 1;
+ *pOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in the destination buffer */
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Working output pointer is updated */
+ pOut = pDst;
+
+ /* Output is converted into 1.31 format. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ in = *pOut << 1;
+ *pOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q7.c
new file mode 100644
index 0000000..252ba95
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_q7.c
@@ -0,0 +1,469 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_sparse_q7.c
+ * Description: Q7 sparse FIR filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+
+/**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 32-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
+ * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * The accumulator is then converted to 18.7 format by discarding the low 7 bits.
+ * Finally, the result is truncated to 1.7 format.
+ */
+
+void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize)
+{
+
+ q7_t *pState = S->pState; /* State pointer */
+ q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q7_t *px; /* Scratch buffer pointer */
+ q7_t *py = pState; /* Temporary pointers for state buffer */
+ q7_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q7_t *pOut = pDst; /* Destination pointer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q7_t coeff = *pCoeffs++; /* Read the coefficient value */
+ q31_t *pScr2 = pScratchOut; /* Working pointer for scratch buffer of output values */
+ q31_t in;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q7_t in1, in2, in3, in4;
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
+ blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 multiplications at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex -
+ (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize >> 2;
+
+ while (blkCnt > 0U)
+ {
+ in1 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+ in2 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+ in3 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+ in4 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+
+ *__SIMD32(pOut)++ = __PACKq7(in1, in2, in3, in4);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ remaining samples are processed in the below loop */
+ blkCnt = blockSize % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
+ blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex =
+ ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c
new file mode 100644
index 0000000..7cccd4a
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c
@@ -0,0 +1,435 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_f32.c
+ * Description: Floating-point IIR Lattice filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup IIR_Lattice Infinite Impulse Response (IIR) Lattice Filters
+ *
+ * This set of functions implements lattice filters
+ * for Q15, Q31 and floating-point data types. Lattice filters are used in a
+ * variety of adaptive filter applications. The filter structure has feedforward and
+ * feedback components and the net impulse response is infinite length.
+ * The functions operate on blocks
+ * of input and output data and each call to the function processes
+ * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+ * <code>pDst</code> point to input and output arrays containing <code>blockSize</code> values.
+
+ * \par Algorithm:
+ * \image html IIRLattice.gif "Infinite Impulse Response Lattice filter"
+ * <pre>
+ * fN(n) = x(n)
+ * fm-1(n) = fm(n) - km * gm-1(n-1) for m = N, N-1, ...1
+ * gm(n) = km * fm-1(n) + gm-1(n-1) for m = N, N-1, ...1
+ * y(n) = vN * gN(n) + vN-1 * gN-1(n) + ...+ v0 * g0(n)
+ * </pre>
+ * \par
+ * <code>pkCoeffs</code> points to array of reflection coefficients of size <code>numStages</code>.
+ * Reflection coefficients are stored in time-reversed order.
+ * \par
+ * <pre>
+ * {kN, kN-1, ....k1}
+ * </pre>
+ * <code>pvCoeffs</code> points to the array of ladder coefficients of size <code>(numStages+1)</code>.
+ * Ladder coefficients are stored in time-reversed order.
+ * \par
+ * <pre>
+ * {vN, vN-1, ...v0}
+ * </pre>
+ * <code>pState</code> points to a state array of size <code>numStages + blockSize</code>.
+ * The state variables shown in the figure above (the g values) are stored in the <code>pState</code> array.
+ * The state variables are updated after each block of data is processed; the coefficients are untouched.
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter.
+ * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numStages, pkCoeffs, pvCoeffs, pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros and then manually initialize the instance structure as follows:
+ * <pre>
+ *arm_iir_lattice_instance_f32 S = {numStages, pState, pkCoeffs, pvCoeffs};
+ *arm_iir_lattice_instance_q31 S = {numStages, pState, pkCoeffs, pvCoeffs};
+ *arm_iir_lattice_instance_q15 S = {numStages, pState, pkCoeffs, pvCoeffs};
+ * </pre>
+ * \par
+ * where <code>numStages</code> is the number of stages in the filter; <code>pState</code> points to the state buffer array;
+ * <code>pkCoeffs</code> points to array of the reflection coefficients; <code>pvCoeffs</code> points to the array of ladder coefficients.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the IIR lattice filter functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t fnext1, gcurr1, gnext; /* Temporary variables for lattice stages */
+ float32_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* temporary variables for counts */
+ float32_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ float32_t *pState; /* State pointer */
+ float32_t *pStateCurnt; /* State current pointer */
+ float32_t k1, k2;
+ float32_t v1, v2, v3, v4;
+ float32_t gcurr2;
+ float32_t fnext2;
+
+ /* initialise loop count */
+ blkCnt = blockSize;
+
+ /* initialise state pointer */
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fnext2 = *pSrc++;
+
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+
+ /* Set accumulator to zero */
+ acc = 0.0;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = (numStages) >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Read gN-1(n-1) from state buffer */
+ gcurr1 = *px1;
+
+ /* read reflection coefficient kN */
+ k1 = *pk;
+
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext1 = fnext2 - (k1 * gcurr1);
+
+ /* read ladder coefficient vN */
+ v1 = *pv;
+
+ /* read next reflection coefficient kN-1 */
+ k2 = *(pk + 1U);
+
+ /* Read gN-2(n-1) from state buffer */
+ gcurr2 = *(px1 + 1U);
+
+ /* read next ladder coefficient vN-1 */
+ v2 = *(pv + 1U);
+
+ /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
+ fnext2 = fnext1 - (k2 * gcurr2);
+
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = gcurr1 + (k1 * fnext1);
+
+ /* read reflection coefficient kN-2 */
+ k1 = *(pk + 2U);
+
+ /* write gN(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ /* Read gN-3(n-1) from state buffer */
+ gcurr1 = *(px1 + 2U);
+
+ /* y(n) += gN(n) * vN */
+ acc += (gnext * v1);
+
+ /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
+ fnext1 = fnext2 - (k1 * gcurr1);
+
+ /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
+ gnext = gcurr2 + (k2 * fnext2);
+
+ /* Read gN-4(n-1) from state buffer */
+ gcurr2 = *(px1 + 3U);
+
+ /* y(n) += gN-1(n) * vN-1 */
+ acc += (gnext * v2);
+
+ /* read reflection coefficient kN-3 */
+ k2 = *(pk + 3U);
+
+ /* write gN-1(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
+ fnext2 = fnext1 - (k2 * gcurr2);
+
+ /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
+ gnext = gcurr1 + (k1 * fnext1);
+
+ /* read ladder coefficient vN-2 */
+ v3 = *(pv + 2U);
+
+ /* y(n) += gN-2(n) * vN-2 */
+ acc += (gnext * v3);
+
+ /* write gN-2(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ /* update pointer */
+ pk += 4U;
+
+ /* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */
+ gnext = (fnext2 * k2) + gcurr2;
+
+ /* read next ladder coefficient vN-3 */
+ v4 = *(pv + 3U);
+
+ /* y(n) += gN-4(n) * vN-4 */
+ acc += (gnext * v4);
+
+ /* write gN-3(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ /* update pointers */
+ px1 += 4U;
+ pv += 4U;
+
+ tapCnt--;
+
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = (numStages) % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ gcurr1 = *px1++;
+ /* Process sample for last taps */
+ fnext1 = fnext2 - ((*pk) * gcurr1);
+ gnext = (fnext1 * (*pk++)) + gcurr1;
+ /* Output samples for last taps */
+ acc += (gnext * (*pv++));
+ *px2++ = gnext;
+ fnext2 = fnext1;
+
+ tapCnt--;
+
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (fnext2 * (*pv));
+
+ *px2++ = fnext2;
+
+ /* write out into pDst */
+ *pDst++ = acc;
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 1U;
+
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numStages) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+#else
+
+void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t fcurr, fnext = 0, gcurr, gnext; /* Temporary variables for lattice stages */
+ float32_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* temporary variables for counts */
+ float32_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ float32_t *pState; /* State pointer */
+ float32_t *pStateCurnt; /* State current pointer */
+
+
+ /* Run the below code for Cortex-M0 */
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0.0f;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+
+ /* Process sample for numStages */
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample for last taps */
+ fnext = fcurr - ((*pk) * gcurr);
+ gnext = (fnext * (*pk++)) + gcurr;
+
+ /* Output samples for last taps */
+ acc += (gnext * (*pv++));
+ *px2++ = gnext;
+ fcurr = fnext;
+
+ /* Decrementing loop counter */
+ tapCnt--;
+
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (fnext * (*pv));
+
+ *px2++ = fnext;
+
+ /* write out into pDst */
+ *pDst++ = acc;
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+/**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_f32.c
new file mode 100644
index 0000000..f20a21b
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_f32.c
@@ -0,0 +1,79 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_init_f32.c
+ * Description: Floating-point IIR lattice filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign reflection coefficient pointer */
+ S->pkCoeffs = pkCoeffs;
+
+ /* Assign ladder coefficient pointer */
+ S->pvCoeffs = pvCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numStages */
+ memset(pState, 0, (numStages + blockSize) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+
+}
+
+ /**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q15.c
new file mode 100644
index 0000000..6cae944
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q15.c
@@ -0,0 +1,79 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_init_q15.c
+ * Description: Q15 IIR lattice filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ */
+
+void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign reflection coefficient pointer */
+ S->pkCoeffs = pkCoeffs;
+
+ /* Assign ladder coefficient pointer */
+ S->pvCoeffs = pvCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numStages */
+ memset(pState, 0, (numStages + blockSize) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+
+}
+
+/**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q31.c
new file mode 100644
index 0000000..fe9869e
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_init_q31.c
@@ -0,0 +1,79 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_init_q31.c
+ * Description: Initialization function for the Q31 IIR lattice filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numStages = numStages;
+
+ /* Assign reflection coefficient pointer */
+ S->pkCoeffs = pkCoeffs;
+
+ /* Assign ladder coefficient pointer */
+ S->pvCoeffs = pvCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numStages */
+ memset(pState, 0, (numStages + blockSize) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+
+}
+
+/**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q15.c
new file mode 100644
index 0000000..9c70b68
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q15.c
@@ -0,0 +1,452 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_q15.c
+ * Description: Q15 IIR lattice filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+
+void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t fcurr, fnext, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ q15_t gnext1, gnext2; /* Temporary variables for lattice stages */
+ uint32_t stgCnt; /* Temporary variables for counts */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q15_t *pState; /* State pointer */
+ q15_t *pStateCurnt; /* State current pointer */
+ q15_t out; /* Temporary variable for output */
+ q31_t v; /* Temporary variable for ladder coefficient */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+ q15_t v1, v2;
+#endif
+
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+
+ /* Process sample for first tap */
+ gcurr = *px1++;
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* write gN(n) into state for next sample processing */
+ *px2++ = (q15_t) gnext;
+ /* y(n) += gN(n) * vN */
+ acc += (q31_t) ((gnext * (*pv++)));
+
+
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = (numStages - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Process sample for 2nd, 6th ...taps */
+ /* Read gN-2(n-1) from state buffer */
+ gcurr = *px1++;
+ /* Process sample for 2nd, 6th .. taps */
+ /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext1 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-1(n) into state */
+ *px2++ = (q15_t) gnext1;
+
+
+ /* Process sample for 3nd, 7th ...taps */
+ /* Read gN-3(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 3rd, 7th .. taps */
+ /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
+ fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
+ fcurr = __SSAT(fcurr, 16);
+ /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
+ gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
+ gnext2 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-2(n) into state */
+ *px2++ = (q15_t) gnext2;
+
+ /* Read vN-1 and vN-2 at a time */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ v = *__SIMD32(pv)++;
+
+#else
+
+ v1 = *pv++;
+ v2 = *pv++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ v = __PKHBT(v1, v2, 16);
+
+#else
+
+ v = __PKHBT(v2, v1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+ /* Pack gN-1(n) and gN-2(n) */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ gnext = __PKHBT(gnext1, gnext2, 16);
+
+#else
+
+ gnext = __PKHBT(gnext2, gnext1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* y(n) += gN-1(n) * vN-1 */
+ /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
+ /* y(n) += gN-2(n) * vN-2 */
+ /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
+ acc = __SMLALD(gnext, v, acc);
+
+
+ /* Process sample for 4th, 8th ...taps */
+ /* Read gN-4(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 4th, 8th .. taps */
+ /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN-3(n) = kN-3 * fN-1(n) + gN-1(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext1 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-3(n) for the next sample process */
+ *px2++ = (q15_t) gnext1;
+
+
+ /* Process sample for 5th, 9th ...taps */
+ /* Read gN-5(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 5th, 9th .. taps */
+ /* fN-5(n) = fN-4(n) - kN-4 * gN-5(n-1) */
+ fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
+ fcurr = __SSAT(fcurr, 16);
+ /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
+ gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
+ gnext2 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-4(n) for the next sample process */
+ *px2++ = (q15_t) gnext2;
+
+ /* Read vN-3 and vN-4 at a time */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ v = *__SIMD32(pv)++;
+
+#else
+
+ v1 = *pv++;
+ v2 = *pv++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ v = __PKHBT(v1, v2, 16);
+
+#else
+
+ v = __PKHBT(v2, v1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+ /* Pack gN-3(n) and gN-4(n) */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ gnext = __PKHBT(gnext1, gnext2, 16);
+
+#else
+
+ gnext = __PKHBT(gnext2, gnext1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* y(n) += gN-4(n) * vN-4 */
+ /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
+ /* y(n) += gN-3(n) * vN-3 */
+ /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
+ acc = __SMLALD(gnext, v, acc);
+
+ tapCnt--;
+
+ }
+
+ fnext = fcurr;
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = (numStages - 1U) % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample for last taps */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* Output samples for last taps */
+ acc += (q31_t) (((q31_t) gnext * (*pv++)));
+ *px2++ = (q15_t) gnext;
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q31_t) (((q31_t) fnext * (*pv++)));
+
+ out = (q15_t) __SSAT(acc >> 15, 16);
+ *px2++ = (q15_t) fnext;
+
+ /* write out into pDst */
+ *pDst++ = out;
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 1U;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ stgCnt = (numStages >> 2U);
+
+ /* copy data */
+ while (stgCnt > 0U)
+ {
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+#else
+
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ stgCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ stgCnt = (numStages) % 0x4U;
+
+ /* copy data */
+ while (stgCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ stgCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ uint32_t stgCnt; /* Temporary variables for counts */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q15_t *pState; /* State pointer */
+ q15_t *pStateCurnt; /* State current pointer */
+ q15_t out; /* Temporary variable for output */
+
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample */
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = fcurr - ((gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = ((fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* Output samples */
+ /* y(n) += gN(n) * vN */
+ acc += (q31_t) ((gnext * (*pv++)));
+ /* write gN(n) into state for next sample processing */
+ *px2++ = (q15_t) gnext;
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q31_t) ((fnext * (*pv++)));
+
+ out = (q15_t) __SSAT(acc >> 15, 16);
+ *px2++ = (q15_t) fnext;
+
+ /* write out into pDst */
+ *pDst++ = out;
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ stgCnt = numStages;
+
+ /* copy data */
+ while (stgCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ stgCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+
+
+/**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q31.c
new file mode 100644
index 0000000..736cbc0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_q31.c
@@ -0,0 +1,338 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_iir_lattice_q31.c
+ * Description: Q31 IIR lattice filter processing function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2*log2(numStages) bits.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is saturated to 1.32 format and then truncated to 1.31 format.
+ */
+
+void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q31_t *px1, *px2, *pk, *pv; /* Temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q31_t *pState; /* State pointer */
+ q31_t *pStateCurnt; /* State current pointer */
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+
+ /* Process sample for first tap */
+ gcurr = *px1++;
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
+ /* write gN-1(n-1) into state for next sample processing */
+ *px2++ = gnext;
+ /* y(n) += gN(n) * vN */
+ acc += ((q63_t) gnext * *pv++);
+
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = (numStages - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Process sample for 2nd, 6th .. taps */
+ /* Read gN-2(n-1) from state buffer */
+ gcurr = *px1++;
+ /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
+ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
+ /* y(n) += gN-1(n) * vN-1 */
+ /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-1(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ /* Process sample for 3nd, 7th ...taps */
+ /* Read gN-3(n-1) from state buffer */
+ gcurr = *px1++;
+ /* Process sample for 3rd, 7th .. taps */
+ /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
+ fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
+ /* y(n) += gN-2(n) * vN-2 */
+ /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-2(n) into state for next sample processing */
+ *px2++ = gnext;
+
+
+ /* Process sample for 4th, 8th ...taps */
+ /* Read gN-4(n-1) from state buffer */
+ gcurr = *px1++;
+ /* Process sample for 4th, 8th .. taps */
+ /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
+ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ /* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
+ /* y(n) += gN-3(n) * vN-3 */
+ /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-3(n) into state for next sample processing */
+ *px2++ = gnext;
+
+
+ /* Process sample for 5th, 9th ...taps */
+ /* Read gN-5(n-1) from state buffer */
+ gcurr = *px1++;
+ /* Process sample for 5th, 9th .. taps */
+ /* fN-5(n) = fN-4(n) - kN-4 * gN-1(n-1) */
+ fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
+ /* y(n) += gN-4(n) * vN-4 */
+ /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-4(n) into state for next sample processing */
+ *px2++ = gnext;
+
+ tapCnt--;
+
+ }
+
+ fnext = fcurr;
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = (numStages - 1U) % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample for last taps */
+ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
+ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
+ /* Output samples for last taps */
+ acc += ((q63_t) gnext * *pv++);
+ *px2++ = gnext;
+ fcurr = fnext;
+
+ tapCnt--;
+
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q63_t) fnext *(
+ *pv++);
+
+ *px2++ = fnext;
+
+ /* write out into pDst */
+ *pDst++ = (q31_t) (acc >> 31U);
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 1U;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numStages) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ };
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample */
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext =
+ clip_q63_to_q31(((q63_t) fcurr -
+ ((q31_t) (((q63_t) gcurr * (*pk)) >> 31))));
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext =
+ clip_q63_to_q31(((q63_t) gcurr +
+ ((q31_t) (((q63_t) fnext * (*pk++)) >> 31))));
+ /* Output samples */
+ /* y(n) += gN(n) * vN */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-1(n-1) into state for next sample processing */
+ *px2++ = gnext;
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q63_t) fnext *(
+ *pv++);
+
+ *px2++ = fnext;
+
+ /* write out into pDst */
+ *pDst++ = (q31_t) (acc >> 31U);
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+
+
+/**
+ * @} end of IIR_Lattice group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_f32.c
new file mode 100644
index 0000000..3975f00
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_f32.c
@@ -0,0 +1,430 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_f32.c
+ * Description: Processing function for the floating-point LMS filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup LMS Least Mean Square (LMS) Filters
+ *
+ * LMS filters are a class of adaptive filters that are able to "learn" an unknown transfer functions.
+ * LMS filters use a gradient descent method in which the filter coefficients are updated based on the instantaneous error signal.
+ * Adaptive filters are often used in communication systems, equalizers, and noise removal.
+ * The CMSIS DSP Library contains LMS filter functions that operate on Q15, Q31, and floating-point data types.
+ * The library also contains normalized LMS filters in which the filter coefficient adaptation is indepedent of the level of the input signal.
+ *
+ * An LMS filter consists of two components as shown below.
+ * The first component is a standard transversal or FIR filter.
+ * The second component is a coefficient update mechanism.
+ * The LMS filter has two input signals.
+ * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter.
+ * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input.
+ * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input.
+ * This "error signal" tends towards zero as the filter adapts.
+ * The LMS processing functions accept the input and reference input signals and generate the filter output and error signal.
+ * \image html LMS.gif "Internal structure of the Least Mean Square filter"
+ *
+ * The functions operate on blocks of data and each call to the function processes
+ * <code>blockSize</code> samples through the filter.
+ * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal,
+ * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal.
+ * All arrays contain <code>blockSize</code> values.
+ *
+ * The functions operate on a block-by-block basis.
+ * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis.
+ * The convergence of the LMS filter is slower compared to the normalized LMS algorithm.
+ *
+ * \par Algorithm:
+ * The output signal <code>y[n]</code> is computed by a standard FIR filter:
+ * <pre>
+ * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+ * </pre>
+ *
+ * \par
+ * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output:
+ * <pre>
+ * e[n] = d[n] - y[n].
+ * </pre>
+ *
+ * \par
+ * After each sample of the error signal is computed, the filter coefficients <code>b[k]</code> are updated on a sample-by-sample basis:
+ * <pre>
+ * b[k] = b[k] + e[n] * mu * x[n-k], for k=0, 1, ..., numTaps-1
+ * </pre>
+ * where <code>mu</code> is the step size and controls the rate of coefficient convergence.
+ *\par
+ * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ * Coefficients are stored in time reversed order.
+ * \par
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+ * Samples in the state buffer are stored in the order:
+ * \par
+ * <pre>
+ * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+ * </pre>
+ * \par
+ * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples.
+ * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters,
+ * to be avoided and yields a significant speed improvement.
+ * The state variables are updated after each block of data is processed.
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter and
+ * coefficient and state arrays cannot be shared among instances.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numTaps, pCoeffs, mu, postShift (not for f32), pState. Also set all of the values in pState to zero.
+ *
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ * To place an instance structure into a const data section, the instance structure must be manually initialized.
+ * Set the values in the state buffer to zeros before static initialization.
+ * The code below statically initializes each of the 3 different data type filter instance structures
+ * <pre>
+ * arm_lms_instance_f32 S = {numTaps, pState, pCoeffs, mu};
+ * arm_lms_instance_q31 S = {numTaps, pState, pCoeffs, mu, postShift};
+ * arm_lms_instance_q15 S = {numTaps, pState, pCoeffs, mu, postShift};
+ * </pre>
+ * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
+ * <code>pCoeffs</code> is the address of the coefficient buffer; <code>mu</code> is the step size parameter; and <code>postShift</code> is the shift applied to coefficients.
+ *
+ * \par Fixed-Point Behavior:
+ * Care must be taken when using the Q15 and Q31 versions of the LMS filter.
+ * The following issues must be considered:
+ * - Scaling of coefficients
+ * - Overflow and saturation
+ *
+ * \par Scaling of Coefficients:
+ * Filter coefficients are represented as fractional values and
+ * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
+ * The fixed-point functions have an additional scaling parameter <code>postShift</code>.
+ * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
+ * This essentially scales the filter coefficients by <code>2^postShift</code> and
+ * allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
+ * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled.
+ *
+ * \par Overflow and Saturation:
+ * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are
+ * described separately as part of the function specific documentation below.
+ */
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+/**
+ * @details
+ * This function operates on floating-point data types.
+ *
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w = 0.0f; /* weight factor */
+
+ e = 0.0f;
+ d = 0.0f;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ blkCnt = blockSize;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result in the accumulator, store in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = (float32_t) (*pRef++);
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for the updating filter coefficients */
+ w = e * mu;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop unrolling for (numTaps - 1U) samples copy */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = (float32_t) (*pRef++);
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Weighting factor for the LMS version */
+ w = e * mu;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb = *pb + (w * (*px++));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ * start of the state buffer. This prepares the state buffer for the
+ * next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of LMS group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_f32.c
new file mode 100644
index 0000000..73158bb
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_f32.c
@@ -0,0 +1,83 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_init_f32.c
+ * Description: Floating-point LMS filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+/**
+ * \par Description:
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * The initial filter coefficients serve as a starting point for the adaptive filter.
+ * <code>pState</code> points to an array of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_lms_f32()</code>.
+ */
+
+void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps */
+ memset(pState, 0, (numTaps + (blockSize - 1)) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+}
+
+/**
+ * @} end of LMS group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q15.c
new file mode 100644
index 0000000..001287d
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q15.c
@@ -0,0 +1,93 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_init_q15.c
+ * Description: Q15 LMS filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+/**
+* @brief Initialization function for the Q15 LMS filter.
+* @param[in] *S points to an instance of the Q15 LMS filter structure.
+* @param[in] numTaps number of filter coefficients.
+* @param[in] *pCoeffs points to the coefficient buffer.
+* @param[in] *pState points to the state buffer.
+* @param[in] mu step size that controls filter coefficient updates.
+* @param[in] blockSize number of samples to process.
+* @param[in] postShift bit shift applied to coefficients.
+* @return none.
+*
+* \par Description:
+* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+* <pre>
+* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+* </pre>
+* The initial filter coefficients serve as a starting point for the adaptive filter.
+* <code>pState</code> points to the array of state variables and size of array is
+* <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of
+* input samples processed by each call to <code>arm_lms_q15()</code>.
+*/
+
+void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps - 1 */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q15_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+
+ /* Assign postShift value to be applied */
+ S->postShift = postShift;
+
+}
+
+/**
+ * @} end of LMS group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q31.c
new file mode 100644
index 0000000..7d95d97
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_init_q31.c
@@ -0,0 +1,93 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_init_q31.c
+ * Description: Q31 LMS filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ *
+ * \par Description:
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * The initial filter coefficients serve as a starting point for the adaptive filter.
+ * <code>pState</code> points to an array of length <code>numTaps+blockSize-1</code> samples,
+ * where <code>blockSize</code> is the number of input samples processed by each call to
+ * <code>arm_lms_q31()</code>.
+ */
+
+void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps - 1 */
+ memset(pState, 0, ((uint32_t) numTaps + (blockSize - 1U)) * sizeof(q31_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+
+ /* Assign postShift value to be applied */
+ S->postShift = postShift;
+
+}
+
+/**
+ * @} end of LMS group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_f32.c
new file mode 100644
index 0000000..a365b33
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_f32.c
@@ -0,0 +1,454 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_f32.c
+ * Description: Processing function for the floating-point Normalised LMS
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup LMS_NORM Normalized LMS Filters
+ *
+ * This set of functions implements a commonly used adaptive filter.
+ * It is related to the Least Mean Square (LMS) adaptive filter and includes an additional normalization
+ * factor which increases the adaptation rate of the filter.
+ * The CMSIS DSP Library contains normalized LMS filter functions that operate on Q15, Q31, and floating-point data types.
+ *
+ * A normalized least mean square (NLMS) filter consists of two components as shown below.
+ * The first component is a standard transversal or FIR filter.
+ * The second component is a coefficient update mechanism.
+ * The NLMS filter has two input signals.
+ * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter.
+ * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input.
+ * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input.
+ * This "error signal" tends towards zero as the filter adapts.
+ * The NLMS processing functions accept the input and reference input signals and generate the filter output and error signal.
+ * \image html LMS.gif "Internal structure of the NLMS adaptive filter"
+ *
+ * The functions operate on blocks of data and each call to the function processes
+ * <code>blockSize</code> samples through the filter.
+ * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal,
+ * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal.
+ * All arrays contain <code>blockSize</code> values.
+ *
+ * The functions operate on a block-by-block basis.
+ * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis.
+ * The convergence of the LMS filter is slower compared to the normalized LMS algorithm.
+ *
+ * \par Algorithm:
+ * The output signal <code>y[n]</code> is computed by a standard FIR filter:
+ * <pre>
+ * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+ * </pre>
+ *
+ * \par
+ * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output:
+ * <pre>
+ * e[n] = d[n] - y[n].
+ * </pre>
+ *
+ * \par
+ * After each sample of the error signal is computed the instanteous energy of the filter state variables is calculated:
+ * <pre>
+ * E = x[n]^2 + x[n-1]^2 + ... + x[n-numTaps+1]^2.
+ * </pre>
+ * The filter coefficients <code>b[k]</code> are then updated on a sample-by-sample basis:
+ * <pre>
+ * b[k] = b[k] + e[n] * (mu/E) * x[n-k], for k=0, 1, ..., numTaps-1
+ * </pre>
+ * where <code>mu</code> is the step size and controls the rate of coefficient convergence.
+ *\par
+ * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ * Coefficients are stored in time reversed order.
+ * \par
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * \par
+ * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+ * Samples in the state buffer are stored in the order:
+ * \par
+ * <pre>
+ * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+ * </pre>
+ * \par
+ * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples.
+ * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters,
+ * to be avoided and yields a significant speed improvement.
+ * The state variables are updated after each block of data is processed.
+ * \par Instance Structure
+ * The coefficients and state variables for a filter are stored together in an instance data structure.
+ * A separate instance structure must be defined for each filter and
+ * coefficient and state arrays cannot be shared among instances.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Zeros out the values in the state buffer.
+ * To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ * numTaps, pCoeffs, mu, energy, x0, pState. Also set all of the values in pState to zero.
+ * For Q7, Q15, and Q31 the following fields must also be initialized;
+ * recipTable, postShift
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ * \par Fixed-Point Behavior:
+ * Care must be taken when using the Q15 and Q31 versions of the normalised LMS filter.
+ * The following issues must be considered:
+ * - Scaling of coefficients
+ * - Overflow and saturation
+ *
+ * \par Scaling of Coefficients:
+ * Filter coefficients are represented as fractional values and
+ * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
+ * The fixed-point functions have an additional scaling parameter <code>postShift</code>.
+ * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
+ * This essentially scales the filter coefficients by <code>2^postShift</code> and
+ * allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
+ * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled.
+ *
+ * \par Overflow and Saturation:
+ * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are
+ * described separately as part of the function specific documentation below.
+ */
+
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ float32_t energy; /* Energy of the input */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */
+
+ /* Initializations of error, difference, Coefficient update */
+ e = 0.0f;
+ d = 0.0f;
+ w = 0.0f;
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= x0 * x0;
+ energy += in * in;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result in the accumulator, store in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = (float32_t) (*pRef++);
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for updating filter coefficients */
+ /* epsilon value 0.000000119209289f */
+ w = (e * mu) / (energy + 0.000000119209289f);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb += w * (*px++);
+ pb++;
+
+ *pb += w * (*px++);
+ pb++;
+
+ *pb += w * (*px++);
+ pb++;
+
+ *pb += w * (*px++);
+ pb++;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb += w * (*px++);
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ S->energy = energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop unrolling for (numTaps - 1U)/4 samples copy */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= x0 * x0;
+ energy += in * in;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result in the accumulator is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = (float32_t) (*pRef++);
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for updating filter coefficients */
+ /* epsilon value 0.000000119209289f */
+ w = (e * mu) / (energy + 0.000000119209289f);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCcoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb += w * (*px++);
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ S->energy = energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_f32.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_f32.c
new file mode 100644
index 0000000..49272f8
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_f32.c
@@ -0,0 +1,93 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_init_f32.c
+ * Description: Floating-point NLMS filter initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * \par Description:
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * The initial filter coefficients serve as a starting point for the adaptive filter.
+ * <code>pState</code> points to an array of length <code>numTaps+blockSize-1</code> samples,
+ * where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_lms_norm_f32()</code>.
+ */
+
+void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps - 1 */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(float32_t));
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+
+ /* Initialise Energy to zero */
+ S->energy = 0.0f;
+
+ /* Initialise x0 to zero */
+ S->x0 = 0.0f;
+
+}
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q15.c
new file mode 100644
index 0000000..0624222
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q15.c
@@ -0,0 +1,100 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_init_q15.c
+ * Description: Q15 NLMS initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * The initial filter coefficients serve as a starting point for the adaptive filter.
+ * <code>pState</code> points to the array of state variables and size of array is
+ * <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed
+ * by each call to <code>arm_lms_norm_q15()</code>.
+ */
+
+void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps - 1 */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q15_t));
+
+ /* Assign post Shift value applied to coefficients */
+ S->postShift = postShift;
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+
+ /* Initialize reciprocal pointer table */
+ S->recipTable = (q15_t *) armRecipTableQ15;
+
+ /* Initialise Energy to zero */
+ S->energy = 0;
+
+ /* Initialise x0 to zero */
+ S->x0 = 0;
+
+}
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q31.c
new file mode 100644
index 0000000..4f70408
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_init_q31.c
@@ -0,0 +1,99 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_init_q31.c
+ * Description: Q31 NLMS initialization function
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ *
+ * <b>Description:</b>
+ * \par
+ * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
+ * <pre>
+ * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ * </pre>
+ * The initial filter coefficients serve as a starting point for the adaptive filter.
+ * <code>pState</code> points to an array of length <code>numTaps+blockSize-1</code> samples,
+ * where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_lms_norm_q31()</code>.
+ */
+
+void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift)
+{
+ /* Assign filter taps */
+ S->numTaps = numTaps;
+
+ /* Assign coefficient pointer */
+ S->pCoeffs = pCoeffs;
+
+ /* Clear state buffer and size is always blockSize + numTaps - 1 */
+ memset(pState, 0, (numTaps + (blockSize - 1U)) * sizeof(q31_t));
+
+ /* Assign post Shift value applied to coefficients */
+ S->postShift = postShift;
+
+ /* Assign state pointer */
+ S->pState = pState;
+
+ /* Assign Step size value */
+ S->mu = mu;
+
+ /* Initialize reciprocal pointer table */
+ S->recipTable = (q31_t *) armRecipTableQ31;
+
+ /* Initialise Energy to zero */
+ S->energy = 0;
+
+ /* Initialise x0 to zero */
+ S->x0 = 0;
+
+}
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q15.c
new file mode 100644
index 0000000..00bde39
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q15.c
@@ -0,0 +1,428 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_q15.c
+ * Description: Q15 NLMS filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+/**
+* @brief Processing function for Q15 normalized LMS filter.
+* @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[in] *pRef points to the block of reference data.
+* @param[out] *pOut points to the block of output data.
+* @param[out] *pErr points to the block of error data.
+* @param[in] blockSize number of samples to process.
+* @return none.
+*
+* <b>Scaling and Overflow Behavior:</b>
+* \par
+* The function is implemented using a 64-bit internal accumulator.
+* Both coefficients and state variables are represented in 1.15 format and
+* multiplications yield a 2.30 result. The 2.30 intermediate results are
+* accumulated in a 64-bit accumulator in 34.30 format.
+* There is no risk of internal overflow with this approach and the full
+* precision of intermediate multiplications is preserved. After all additions
+* have been performed, the accumulator is truncated to 34.15 format by
+* discarding low 15 bits. Lastly, the accumulator is saturated to yield a
+* result in 1.15 format.
+*
+* \par
+* In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.
+*
+ */
+
+void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q15_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q31_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0, d = 0; /* error, reference data sample */
+ q15_t w = 0, in; /* weight factor and state */
+ q15_t x0; /* temporary variable to hold input sample */
+ //uint32_t shift = (uint32_t) S->postShift + 1U; /* Shift to be applied to the output */
+ q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
+ int32_t uShift = (32 - lShift);
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= (((q31_t) x0 * (x0)) >> 15);
+ energy += (((q31_t) in * (in)) >> 15);
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+ /* Perform the multiply-accumulate */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+ acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+
+#else
+
+ acc += (((q31_t) * px++ * (*pb++)));
+ acc += (((q31_t) * px++ * (*pb++)));
+ acc += (((q31_t) * px++ * (*pb++)));
+ acc += (((q31_t) * px++ * (*pb++)));
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (((q31_t) * px++ * (*pb++)));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = __SSAT(acc, 16U);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q15_t) acc;
+ *pErr++ = e;
+
+ /* Calculation of 1/energy */
+ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+ &oneByEnergy, S->recipTable);
+
+ /* Calculation of e * mu value */
+ errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+ /* Calculation of (e * mu) * (1/energy) value */
+ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+ /* Weighting factor for the normalized version */
+ w = (q15_t) __SSAT((q31_t) acc, 16);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q15_t) energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculation of count for copying integer writes */
+ tapCnt = (numTaps - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+#else
+
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+#endif
+
+ tapCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= (((q31_t) x0 * (x0)) >> 15);
+ energy += (((q31_t) in * (in)) >> 15);
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (((q31_t) * px++ * (*pb++)));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = __SSAT(acc, 16U);
+
+ /* Converting the result to 1.15 format */
+ //acc = __SSAT((acc >> (16U - shift)), 16U);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q15_t) acc;
+ *pErr++ = e;
+
+ /* Calculation of 1/energy */
+ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+ &oneByEnergy, S->recipTable);
+
+ /* Calculation of e * mu value */
+ errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+ /* Calculation of (e * mu) * (1/energy) value */
+ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+ /* Weighting factor for the normalized version */
+ w = (q15_t) __SSAT((q31_t) acc, 16);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = *pb + (((q31_t) w * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q15_t) energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* copy (numTaps - 1U) data */
+ tapCnt = (numTaps - 1U);
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q31.c
new file mode 100644
index 0000000..bc65fa6
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q31.c
@@ -0,0 +1,419 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_norm_q31.c
+ * Description: Processing function for the Q31 NLMS filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS_NORM
+ * @{
+ */
+
+/**
+* @brief Processing function for Q31 normalized LMS filter.
+* @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+* @param[in] *pSrc points to the block of input data.
+* @param[in] *pRef points to the block of reference data.
+* @param[out] *pOut points to the block of output data.
+* @param[out] *pErr points to the block of error data.
+* @param[in] blockSize number of samples to process.
+* @return none.
+*
+* <b>Scaling and Overflow Behavior:</b>
+* \par
+* The function is implemented using an internal 64-bit accumulator.
+* The accumulator has a 2.62 format and maintains full precision of the intermediate
+* multiplication results but provides only a single guard bit.
+* Thus, if the accumulator result overflows it wraps around rather than clip.
+* In order to avoid overflows completely the input signal must be scaled down by
+* log2(numTaps) bits. The reference signal should not be scaled down.
+* After all multiply-accumulates are performed, the 2.62 accumulator is shifted
+* and saturated to 1.31 format to yield the final result.
+* The output signal and error signal are in 1.31 format.
+*
+* \par
+* In this filter, filter coefficients are updated for each sample and the
+* updation of filter cofficients are saturted.
+*
+*/
+
+void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q31_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0, d = 0; /* error, reference data sample */
+ q31_t w = 0, in; /* weight factor and state */
+ q31_t x0; /* temporary variable to hold input sample */
+// uint32_t shift = 32U - ((uint32_t) S->postShift + 1U); /* Shift to be applied to the output */
+ q31_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q31_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ while (blkCnt > 0U)
+ {
+
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy = (q31_t) ((((q63_t) energy << 32) -
+ (((q63_t) x0 * x0) << 1)) >> 32);
+ energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+ acc += ((q63_t) (*px++)) * (*pb++);
+ acc += ((q63_t) (*px++)) * (*pb++);
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q31_t) acc;
+ *pErr++ = e;
+
+ /* Calculates the reciprocal of energy */
+ postShift = arm_recip_q31(energy + DELTA_Q31,
+ &oneByEnergy, &S->recipTable[0]);
+
+ /* Calculation of product of (e * mu) */
+ errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
+
+ /* Weighting factor for the normalized version */
+ w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+
+ /* coef is in 2.30 format */
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ /* get coef in 1.31 format by left shifting */
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ /* update coefficient buffer to next coefficient */
+ pb++;
+
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q31_t) energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop unrolling for (numTaps - 1U) samples copy */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ while (blkCnt > 0U)
+ {
+
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy =
+ (q31_t) ((((q63_t) energy << 32) - (((q63_t) x0 * x0) << 1)) >> 32);
+ energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Converting the result to 1.31 format */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+
+ //acc = (q31_t) (acc >> shift);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q31_t) acc;
+ *pErr++ = e;
+
+ /* Calculates the reciprocal of energy */
+ postShift =
+ arm_recip_q31(energy + DELTA_Q31, &oneByEnergy, &S->recipTable[0]);
+
+ /* Calculation of product of (e * mu) */
+ errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
+
+ /* Weighting factor for the normalized version */
+ w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ /* coef is in 2.30 format */
+ coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
+ /* get coef in 1.31 format by left shifting */
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ /* update coefficient buffer to next coefficient */
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q31_t) energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop for (numTaps - 1U) samples copy */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of LMS_NORM group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q15.c
new file mode 100644
index 0000000..8d5226e
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q15.c
@@ -0,0 +1,368 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_q15.c
+ * Description: Processing function for the Q15 LMS filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * \par Scaling and Overflow Behavior:
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ *
+ * \par
+ * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.
+ *
+ */
+
+void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t mu = S->mu; /* Adaptive factor */
+ q15_t *px; /* Temporary pointer for state */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0; /* error of data sample */
+ q15_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
+ int32_t uShift = (32 - lShift);
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Initializing blkCnt with blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2U;
+
+ while (tapCnt > 0U)
+ {
+ /* acc += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
+ /* Perform the multiply-accumulate */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+ acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
+
+#else
+
+ acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
+ acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
+ acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
+ acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = __SSAT(acc, 16);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q15_t) acc;
+
+ *pErr++ = (q15_t) e;
+
+ /* Compute alpha i.e. intermediate constant for taps update */
+ alpha = (q15_t) (((q31_t) e * (mu)) >> 15);
+
+ /* Initialize state pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2U;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Decrement the loop counter */
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Calculation of count for copying integer writes */
+ tapCnt = (numTaps - 1U) >> 2;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+#else
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+#endif
+
+ tapCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t) ((q31_t) (*px++) * (*pb++));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = __SSAT(acc, 16);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q15_t) acc;
+
+ *pErr++ = (q15_t) e;
+
+ /* Compute alpha i.e. intermediate constant for taps update */
+ alpha = (q15_t) (((q31_t) e * (mu)) >> 15);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) __SSAT((coef), 16);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Decrement the loop counter */
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of LMS group
+ */
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q31.c
new file mode 100644
index 0000000..66b2a91
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_q31.c
@@ -0,0 +1,357 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_lms_q31.c
+ * Description: Processing function for the Q31 LMS filter
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup LMS
+ * @{
+ */
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * \par Scaling and Overflow Behavior:
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate
+ * multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clips.
+ * In order to avoid overflows completely the input signal must be scaled down by
+ * log2(numTaps) bits.
+ * The reference signal should not be scaled down.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is shifted
+ * and saturated to 1.31 format to yield the final result.
+ * The output signal and error signal are in 1.31 format.
+ *
+ * \par
+ * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.
+ */
+
+void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t mu = S->mu; /* Adaptive factor */
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0; /* error of data sample */
+ q31_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Initializing blkCnt with blockSize */
+ blkCnt = blockSize;
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ /* acc += b[N] * x[n-N] */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* acc += b[N-1] * x[n-N-1] */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* acc += b[N-2] * x[n-N-2] */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* acc += b[N-3] * x[n-N-3] */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q31_t) acc;
+
+ *pErr++ = (q31_t) e;
+
+ /* Compute alpha i.e. intermediate constant for taps update */
+ alpha = (q31_t) (((q63_t) e * mu) >> 31);
+
+ /* Initialize state pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Update filter coefficients */
+ while (tapCnt > 0U)
+ {
+ /* coef is in 2.30 format */
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ /* get coef in 1.31 format by left shifting */
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ /* update coefficient buffer to next coefficient */
+ pb++;
+
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop unrolling for (numTaps - 1U) samples copy */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Store the result from accumulator into the destination buffer. */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ *pOut++ = (q31_t) acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q31_t) acc;
+
+ *pErr++ = (q31_t) e;
+
+ /* Weighting factor for the LMS version */
+ alpha = (q31_t) (((q63_t) e * mu) >> 31);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
+ *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = (numTaps - 1U);
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of LMS group
+ */