summaryrefslogtreecommitdiff
path: root/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c')
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c722
1 files changed, 722 insertions, 0 deletions
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c
new file mode 100644
index 0000000..c6721e0
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_q15.c
@@ -0,0 +1,722 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_q15.c
+ * Description: Convolution of Q15 sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * This approach provides 33 guard bits and there is no risk of overflow.
+ * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
+ *
+ * \par
+ * Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
+ *
+ */
+
+void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+
+#if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *pOut = pDst; /* output pointer */
+ q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+
+ /* --------------------------
+ * Initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations less than 4 */
+ /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ while ((count < 4U) && (blockSize1 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Loop over number of MAC operations between
+ * inputA samples and inputB samples */
+ k = count;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* The second part of the stage starts here */
+ /* The internal loop, over count, is unrolled by 4 */
+ /* To, read the last two inputB samples using SIMD:
+ * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+ py = py - 1;
+
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + (count - 1U);
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is the index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+
+ /* --------------------
+ * Stage2 process
+ * -------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ py = py - 1U;
+
+ /* Set all accumulators to zero */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+
+ /* read x[0], x[1] samples */
+ x0 = *__SIMD32(px);
+ /* read x[1], x[2] samples */
+ x1 = _SIMD32_OFFSET(px+1);
+ px+= 2U;
+
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read the last two inputB samples using SIMD:
+ * y[srcBLen - 1] and y[srcBLen - 2] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+ acc0 = __SMLALDX(x0, c0, acc0);
+
+ /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+ acc1 = __SMLALDX(x1, c0, acc1);
+
+ /* Read x[2], x[3] */
+ x2 = *__SIMD32(px);
+
+ /* Read x[3], x[4] */
+ x3 = _SIMD32_OFFSET(px+1);
+
+ /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+ acc2 = __SMLALDX(x2, c0, acc2);
+
+ /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+ acc3 = __SMLALDX(x3, c0, acc3);
+
+ /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+ c0 = *__SIMD32(py)--;
+
+ /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+ acc0 = __SMLALDX(x2, c0, acc0);
+
+ /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+ acc1 = __SMLALDX(x3, c0, acc1);
+
+ /* Read x[4], x[5] */
+ x0 = _SIMD32_OFFSET(px+2);
+
+ /* Read x[5], x[6] */
+ x1 = _SIMD32_OFFSET(px+3);
+ px += 4U;
+
+ /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+ acc2 = __SMLALDX(x0, c0, acc2);
+
+ /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+ acc3 = __SMLALDX(x1, c0, acc3);
+
+ } while (--k);
+
+ /* For the next MAC operations, SIMD is not used
+ * So, the 16 bit pointer if inputB, py is updated */
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ if (k == 1U)
+ {
+ /* Read y[srcBLen - 5] */
+ c0 = *(py+1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+
+#else
+
+ c0 = c0 & 0x0000FFFF;
+
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[7] */
+ x3 = *__SIMD32(px);
+ px++;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+ acc2 = __SMLALDX(x1, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+ if (k == 2U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+ px += 2U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+ }
+
+ if (k == 3U)
+ {
+ /* Read y[srcBLen - 5], y[srcBLen - 6] */
+ c0 = _SIMD32_OFFSET(py);
+
+ /* Read x[7], x[8] */
+ x3 = *__SIMD32(px);
+
+ /* Read x[9] */
+ x2 = _SIMD32_OFFSET(px+1);
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x0, c0, acc0);
+ acc1 = __SMLALDX(x1, c0, acc1);
+ acc2 = __SMLALDX(x3, c0, acc2);
+ acc3 = __SMLALDX(x2, c0, acc3);
+
+ c0 = *(py-1);
+
+#ifdef ARM_MATH_BIG_ENDIAN
+
+ c0 = c0 << 16U;
+#else
+
+ c0 = c0 & 0x0000FFFF;
+#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
+ /* Read x[10] */
+ x3 = _SIMD32_OFFSET(px+2);
+ px += 3U;
+
+ /* Perform the multiply-accumulates */
+ acc0 = __SMLALDX(x1, c0, acc0);
+ acc1 = __SMLALD(x2, c0, acc1);
+ acc2 = __SMLALDX(x2, c0, acc2);
+ acc3 = __SMLALDX(x3, c0, acc3);
+ }
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the pointer pIn1 index, count by 1 */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) ((q31_t) * px++ * *py--);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ blockSize3 = srcBLen - 1U;
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ pIn2 = pSrc2 - 1U;
+ py = pIn2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ /* For loop unrolling by 4, this stage is divided into two. */
+ /* First part of this stage computes the MAC operations greater than 4 */
+ /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+ /* The first part of the stage starts here */
+ j = blockSize3 >> 2U;
+
+ while ((j > 0U) && (blockSize3 > 0U))
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
+ * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+ /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
+ * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+ sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* For the next MAC operations, the pointer py is used without SIMD
+ * So, py is incremented by 1 */
+ py = py + 1U;
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pIn2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+
+ j--;
+ }
+
+ /* The second part of the stage starts here */
+ /* SIMD is not used for the next MAC operations,
+ * so pointer py is updated to read only one sample at a time */
+ py = py + 1U;
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum = __SMLALD(*px++, *py--, sum);
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+/* Run the below code for Cortex-M0 */
+
+ q15_t *pIn1 = pSrcA; /* input pointer */
+ q15_t *pIn2 = pSrcB; /* coefficient pointer */
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < (srcALen + srcBLen - 1); i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if (((i - j) < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t) pIn1[j] * (pIn2[i - j]);
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q15_t) __SSAT((sum >> 15U), 16U);
+ }
+
+#endif /* #if (defined(ARM_MATH_CM7) || defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */
+
+}
+
+/**
+ * @} end of Conv group
+ */