summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/paper/rotohsm_paper.pdfbin1190616 -> 1191965 bytes
-rw-r--r--doc/paper/rotohsm_paper.tex2
-rw-r--r--doc/paper/rotohsm_tech_report.pdfbin111459 -> 112307 bytes
-rw-r--r--prototype/sensor-analysis/Accelerometer Data Analysis.ipynb4632
4 files changed, 4376 insertions, 258 deletions
diff --git a/doc/paper/rotohsm_paper.pdf b/doc/paper/rotohsm_paper.pdf
index f0ad0b6..2a52783 100644
--- a/doc/paper/rotohsm_paper.pdf
+++ b/doc/paper/rotohsm_paper.pdf
Binary files differ
diff --git a/doc/paper/rotohsm_paper.tex b/doc/paper/rotohsm_paper.tex
index e2f3928..bb9beaa 100644
--- a/doc/paper/rotohsm_paper.tex
+++ b/doc/paper/rotohsm_paper.tex
@@ -485,6 +485,8 @@ which allows us to reliably transfer several tens of bytes in each direction dur
speed of rotation. As a result of our prototype experiments, we consider a larger-scale implementation of the inertial
HSM concept practical.
+\section{Using accelerometers as rotation sensors}
+
\begin{figure}
\center
\includegraphics[width=8cm]{prototype_early_comms_small.jpg}
diff --git a/doc/paper/rotohsm_tech_report.pdf b/doc/paper/rotohsm_tech_report.pdf
index d87bc8e..780bfb0 100644
--- a/doc/paper/rotohsm_tech_report.pdf
+++ b/doc/paper/rotohsm_tech_report.pdf
Binary files differ
diff --git a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
index b7cf70d..23f31b8 100644
--- a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
+++ b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
@@ -45,41 +45,18 @@
},
{
"cell_type": "code",
- "execution_count": 706,
- "metadata": {},
+ "execution_count": 836,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Last run was ID #33 with 3178 packets total, 125 distinct over 99.94346904754639s\n"
+ "Loading run #28 with 4918 packets total, 178 distinct over 161.5061011314392s\n"
]
- }
- ],
- "source": [
- "num_packets, = db.execute('SELECT COUNT(*) FROM packets WHERE run_id=?', (last_run,)).fetchone()\n",
- "num_packets_distinct, = db.execute('SELECT COUNT(*) FROM (SELECT DISTINCT data FROM packets WHERE run_id=?)', (last_run,)).fetchone()\n",
- "timespan_start, timespan_end = db.execute('SELECT MIN(timestamp_us)/1e6, MAX(timestamp_us)/1e6 FROM packets WHERE run_id=?', (last_run,)).fetchone()\n",
- "timespan = timespan_end - timespan_start\n",
- "print(f'Last run was ID #{last_run} with {num_packets} packets total, {num_packets_distinct} distinct over {timespan}s')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 707,
- "metadata": {},
- "outputs": [],
- "source": [
- "timestamps = db.execute('SELECT timestamp_us/1e6 FROM packets WHERE run_id=? ORDER BY timestamp_us', (last_run,)).fetchall()\n",
- "timestamps = [ ts - timespan_start for ts, in timestamps ]\n",
- "deltas = [ b-a for a, b in zip(timestamps[:-1], timestamps[1:]) ]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 708,
- "metadata": {},
- "outputs": [
+ },
{
"data": {
"application/javascript": [
@@ -1041,7 +1018,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -1051,133 +1028,107 @@
"output_type": "display_data"
},
{
- "data": {
- "text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f3dff0d7190>]"
- ]
- },
- "execution_count": 708,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "fig, ax = plt.subplots()\n",
- "ax.plot(deltas)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 709,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Packet length: 40\n"
- ]
- }
- ],
- "source": [
- "packet_lengths = db.execute('SELECT LENGTH(data) FROM packets WHERE run_id=? GROUP BY LENGTH(data)', (last_run,)).fetchall()\n",
- "assert len(packet_lengths) == 1\n",
- "packet_len, = packet_lengths[0]\n",
- "print('Packet length:', packet_len)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 710,
- "metadata": {},
- "outputs": [
- {
"name": "stdout",
"output_type": "stream",
"text": [
- "Very approximate lower bound on baudrate: 129032.25806451612 bd\n"
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 611 ... 813\n"
]
}
],
"source": [
- "#approx_baudrate = 1.0 / (np.mean([ x for x in deltas if x < interval*0.02]) / (packet_len*10))\n",
- "approx_baudrate = 1.0 / (0.0031 / (packet_len*10))\n",
- "print(f'Very approximate lower bound on baudrate: {approx_baudrate} bd')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 711,
- "metadata": {},
- "outputs": [],
- "source": [
"def decode_packet(packet):\n",
" seq, *data, _crc = struct.unpack('<I16hI', packet)\n",
" return (seq, tuple(data))\n",
"\n",
- "packets = sorted([ decode_packet(data) for data, in db.execute('SELECT data FROM packets WHERE run_id=?', (last_run,)) ])"
+ "def plot_measurements(ax, t, y):\n",
+ " ax.grid()\n",
+ " ax.plot(t, y / mems_lsb_per_g, color='darkblue', alpha=0.2)\n",
+ " #ax.plot(ts, scipy.signal.savgol_filter(reassembled_values / mems_lsb_per_g, 21, 2) )\n",
+ " sos = scipy.signal.butter(8, 0.5, 'lp', fs=10, output='sos')\n",
+ " filtered = scipy.signal.sosfiltfilt(sos, y / mems_lsb_per_g)\n",
+ " ax.plot(t, filtered, color='darkblue')\n",
+ " \n",
+ " ax.set_ylabel(r'$a\\; [g]$')\n",
+ " secax_y = ax.secondary_yaxis(\n",
+ " 'right', functions=(g_to_ms, ms_to_g))\n",
+ " secax_y.set_ylabel(r'$a\\; [ms^{-1}]$')\n",
+ "\n",
+ " formatter = ticker.FuncFormatter(lambda tick, _pos: f'{int(tick):02d}:{tick*60%60:02.0f}')\n",
+ " ax.xaxis.set_major_formatter(formatter)\n",
+ "\n",
+ "def load_run(run_id, plot=True):\n",
+ " num_packets, = db.execute('SELECT COUNT(*) FROM packets WHERE run_id=?', (run_id,)).fetchone()\n",
+ " num_packets_distinct, = db.execute('SELECT COUNT(*) FROM (SELECT DISTINCT data FROM packets WHERE run_id=?)', (run_id,)).fetchone()\n",
+ " timespan_start, timespan_end = db.execute('SELECT MIN(timestamp_us)/1e6, MAX(timestamp_us)/1e6 FROM packets WHERE run_id=?', (run_id,)).fetchone()\n",
+ " timespan = timespan_end - timespan_start\n",
+ " print(f'Loading run #{run_id} with {num_packets} packets total, {num_packets_distinct} distinct over {timespan}s')\n",
+ " \n",
+ " packet_timestamps = db.execute('SELECT timestamp_us/1e6 FROM packets WHERE run_id=? ORDER BY timestamp_us', (run_id,)).fetchall()\n",
+ " packet_timestamps = [ ts - timespan_start for ts, in packet_timestamps ]\n",
+ " packet_delays = [ b-a for a, b in zip(packet_timestamps[:-1], packet_timestamps[1:]) ]\n",
+ " \n",
+ " if plot:\n",
+ " fig, (ax1, ax2) = plt.subplots(2)\n",
+ " ax1.grid()\n",
+ " ax1.plot(packet_delays)\n",
+ " \n",
+ " packet_lengths = db.execute('SELECT LENGTH(data) FROM packets WHERE run_id=? GROUP BY LENGTH(data)', (run_id,)).fetchall()\n",
+ " assert len(packet_lengths) == 1\n",
+ " packet_len, = packet_lengths[0]\n",
+ " print('Packet length:', packet_len)\n",
+ " \n",
+ " #approx_baudrate = 1.0 / (np.mean([ x for x in deltas if x < interval*0.02]) / (packet_len*10))\n",
+ " approx_baudrate = 1.0 / (0.0031 / (packet_len*10))\n",
+ " print(f'Very approximate lower bound on baudrate: {approx_baudrate} bd')\n",
+ " \n",
+ " packets = sorted([ decode_packet(data) for data, in db.execute('SELECT data FROM packets WHERE run_id=?', (run_id,)) ])\n",
+ " \n",
+ " # group packets by sequence number\n",
+ " by_seq = { k: list(g) for k, g in itertools.groupby(packets, key=lambda x: x[0]) }\n",
+ " for seq, le_packets in by_seq.items():\n",
+ " # make sure we only ever have one version of a packet with a particular sequence number (no CRC collisions)\n",
+ " if len(set(le_packets)) > 1:\n",
+ " # In test_run.sqlite3 run 2 this happens to coincide with the time I intentionally bumped the rotor... ?\n",
+ " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n",
+ " print('BUG: Duplicate sequence number')\n",
+ " print('Sequence number:', seq)\n",
+ " for seq, data in set(le_packets):\n",
+ " print(' ', data)\n",
+ " \n",
+ " seqs = list(by_seq)\n",
+ " print(f'Sequence number range: {min(seqs)} ... {max(seqs)}')\n",
+ " \n",
+ " # FIXME this is only approximate, doesn't consider sequence numbers properly!!!\n",
+ " # Negate values: Our sensor is mounted such that -X points outwards,\n",
+ " # so by negating we get larger centrifugal force -> higher value\n",
+ " y = np.array([ -val for (_seq, values), *_rest in by_seq.values() for val in values[:8] ])\n",
+ " t = np.arange(0, len(y)) / sampling_rate / 60\n",
+ " if plot:\n",
+ " plot_measurements(ax2, t, y)\n",
+ " return t, y, packet_delays, packet_timestamps\n",
+ " \n",
+ "load_run(28);"
]
},
{
"cell_type": "code",
- "execution_count": 712,
+ "execution_count": 1019,
"metadata": {
"scrolled": false
},
- "outputs": [],
- "source": [
- "# group packets by sequence number\n",
- "by_seq = { k: list(g) for k, g in itertools.groupby(packets, key=lambda x: x[0]) }\n",
- "for seq, le_packets in by_seq.items():\n",
- " # make sure we only ever have one version of a packet with a particular sequence number (no CRC collisions)\n",
- " if len(set(le_packets)) > 1:\n",
- " # In test_run.sqlite3 run 2 this happens to coincide with the time I intentionally bumped the rotor... ?\n",
- " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n",
- " print('BUG: Duplicate sequence number')\n",
- " print('Sequence number:', seq)\n",
- " for seq, data in set(le_packets):\n",
- " print(' ', data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 713,
- "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Sequence number range: 35 ... 161\n"
+ "Loading run #40 with 4762 packets total, 682 distinct over 572.8108429908752s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 739 ... 1457\n"
]
- }
- ],
- "source": [
- "seqs = list(by_seq)\n",
- "print(f'Sequence number range: {min(seqs)} ... {max(seqs)}')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 714,
- "metadata": {},
- "outputs": [],
- "source": [
- "# FIXME this is only approximate, doesn't consider sequence numbers properly!!!\n",
- "# Negate values: Our sensor is mounted such that -X points outwards,\n",
- "# so by negating we get larger centrifugal force -> higher value\n",
- "reassembled_values = np.array([ -val for (_seq, values), *_rest in by_seq.values() for val in values[:8] ])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 715,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
+ },
{
"data": {
"application/javascript": [
@@ -2139,7 +2090,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -2152,76 +2103,68 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Found sensor offset: 1.00 g / 9.81 m/s^2\n",
+ "Found sensor offset: 0.57 g / 5.55 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 3.12 Hz:\n",
" Theory: 2.16 g / 21.14 m/s^2\n",
- " Measurement: 55.57 g / 544.9912192549019 m/s^2\n",
- " Rel. Error: -96.12 %\n",
- " Abs. Error: -53.42 g / -523.85 m/s^2\n",
+ " Measurement: 1.90 g / 18.586194313627637 m/s^2\n",
+ " Rel. Error: 13.72 %\n",
+ " Abs. Error: 0.26 g / 2.55 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 5.55 Hz:\n",
" Theory: 6.82 g / 66.88 m/s^2\n",
- " Measurement: -0.58 g / -5.674407202881151 m/s^2\n",
- " Rel. Error: -1278.66 %\n",
- " Abs. Error: 7.40 g / 72.56 m/s^2\n",
+ " Measurement: 6.60 g / 64.67817413725541 m/s^2\n",
+ " Rel. Error: 3.41 %\n",
+ " Abs. Error: 0.22 g / 2.20 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 8.20 Hz:\n",
" Theory: 14.89 g / 146.00 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 14.82 g / 145.35641444809548 m/s^2\n",
+ " Rel. Error: 0.44 %\n",
+ " Abs. Error: 0.07 g / 0.64 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 10.20 Hz:\n",
" Theory: 23.04 g / 225.90 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 23.11 g / 226.6766272456559 m/s^2\n",
+ " Rel. Error: -0.34 %\n",
+ " Abs. Error: -0.08 g / -0.77 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 12.50 Hz:\n",
" Theory: 34.60 g / 339.27 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 34.80 g / 341.26606334638393 m/s^2\n",
+ " Rel. Error: -0.59 %\n",
+ " Abs. Error: -0.20 g / -2.00 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 15.60 Hz:\n",
" Theory: 53.88 g / 528.41 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 51.75 g / 507.51233891199473 m/s^2\n",
+ " Rel. Error: 4.12 %\n",
+ " Abs. Error: 2.13 g / 20.90 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 19.20 Hz:\n",
" Theory: 81.62 g / 800.43 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 82.09 g / 805.0345119987545 m/s^2\n",
+ " Rel. Error: -0.57 %\n",
+ " Abs. Error: -0.47 g / -4.60 m/s^2\n",
"\n",
- "Centrifugal acceleration at 6.49 Hz:\n",
+ "Centrifugal acceleration at 11.60 Hz:\n",
" Theory: 29.79 g / 292.17 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 29.71 g / 291.36536349393447 m/s^2\n",
+ " Rel. Error: 0.28 %\n",
+ " Abs. Error: 0.08 g / 0.81 m/s^2\n",
"\n",
"Centrifugal acceleration at 6.49 Hz:\n",
" Theory: 9.33 g / 91.46 m/s^2\n",
- " Measurement: nan g / nan m/s^2\n",
- " Rel. Error: nan %\n",
- " Abs. Error: nan g / nan m/s^2\n",
+ " Measurement: 9.21 g / 90.28568973827844 m/s^2\n",
+ " Rel. Error: 1.30 %\n",
+ " Abs. Error: 0.12 g / 1.17 m/s^2\n",
"\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "<ipython-input-715-bd4d0359155e>:46: RuntimeWarning: Mean of empty slice.\n",
- " ivl_avg = (reassembled_values / mems_lsb_per_g)[idx].mean()\n",
- "/usr/lib/python3.9/site-packages/numpy/core/_methods.py:188: RuntimeWarning: invalid value encountered in double_scalars\n",
- " ret = ret.dtype.type(ret / rcount)\n"
- ]
}
],
"source": [
+ "t, y, _1, _2 = load_run(40, plot=False)\n",
+ "\n",
"sampling_rate = 10 # sps, set in firmware\n",
"mems_lsb_per_g = 68 # LSBs per 1g for our accelerometer\n",
"\n",
@@ -2230,28 +2173,13 @@
"\n",
"fig, ax = plt.subplots()\n",
"#ax.axvspan(ivl_start/60/sampling_rate, ivl_end/60/sampling_rate, color='orange', alpha=0.5)\n",
- "\n",
- "ax.grid()\n",
- "\n",
- "ts = np.arange(0, len(reassembled_values)) / sampling_rate / 60\n",
- "ax.plot(ts, reassembled_values / mems_lsb_per_g, color='darkblue', alpha=0.2)\n",
- "#ax.plot(ts, scipy.signal.savgol_filter(reassembled_values / mems_lsb_per_g, 21, 2) )\n",
- "sos = scipy.signal.butter(8, 0.5, 'lp', fs=10, output='sos')\n",
- "filtered = scipy.signal.sosfiltfilt(sos, reassembled_values / mems_lsb_per_g)\n",
- "ax.plot(ts, filtered, color='darkblue')\n",
+ " \n",
+ "plot_measurements(ax, t, y)\n",
"\n",
"g = 9.8066\n",
"g_to_ms = lambda x: x * g\n",
"ms_to_g = lambda x: x / g\n",
"\n",
- "ax.set_ylabel(r'$a\\; [g]$')\n",
- "secax_y = ax.secondary_yaxis(\n",
- " 'right', functions=(g_to_ms, ms_to_g))\n",
- "secax_y.set_ylabel(r'$a\\; [ms^{-1}]$')\n",
- "\n",
- "formatter = ticker.FuncFormatter(lambda tick, _pos: f'{int(tick):02d}:{tick*60%60:02.0f}')\n",
- "ax.xaxis.set_major_formatter(formatter)\n",
- "\n",
"r_mems = 55e-3 # radius of our sensor from the axis of rotation in m\n",
"le_data = [(0, 50, 3.12), (1,50,5.55), (2,40, 8.2), (3, 30, 10.2), (4,15, 12.5), (5,10, 15.6),\n",
" (6,10, 19.2), (7,11, 11.6), (8,15, 6.49)]\n",
@@ -2263,11 +2191,12 @@
" omegan = 2*np.pi*f_actual # angular velocity\n",
" acc = omegan**2 * r_mems # m/s^2\n",
" acc_theory.append(acc / g)\n",
+ " ax.axvspan(ts_abs-ivl_w/2, ts_abs+ivl_w/2, zorder=1, color='red', alpha=0.1)\n",
" \n",
" ts_abs = ts_m + ts_s/60\n",
" ivl_w = 0.5\n",
- " idx = (ts_abs - ivl_w/2 < ts) & (ts < ts_abs + ivl_w/2)\n",
- " ivl_avg = (reassembled_values / mems_lsb_per_g)[idx].mean()\n",
+ " idx = (ts_abs - ivl_w/2 < t) & (t < ts_abs + ivl_w/2)\n",
+ " ivl_avg = (y / mems_lsb_per_g)[idx].mean()\n",
" acc_meas.append(ivl_avg)\n",
"\n",
"# Calculate offset correction. The offset is due to manufacturing imperfections inherent to the device.\n",
@@ -2290,7 +2219,7 @@
"print(f'Found sensor offset: {sensor_offx:.2f} g / {sensor_offx*g:.2f} m/s^2')\n",
"print()\n",
"\n",
- "for theory, meas, interval in zip(acc_theory, acc_meas, interval_speeds):\n",
+ "for theory, meas, interval, (_1, _2, f_actual) in zip(acc_theory, acc_meas, interval_speeds, le_data):\n",
" ax.axhline(theory - sensor_offx, color='orange', alpha=1, zorder=1)\n",
" meas += sensor_offx\n",
" \n",
@@ -2304,7 +2233,7 @@
},
{
"cell_type": "code",
- "execution_count": 716,
+ "execution_count": 1022,
"metadata": {},
"outputs": [
{
@@ -3268,7 +3197,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -3278,71 +3207,1096 @@
"output_type": "display_data"
},
{
+ "data": {
+ "text/plain": [
+ "<matplotlib.legend.Legend at 0x7f3df6c2b3d0>"
+ ]
+ },
+ "execution_count": 1022,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "\n",
+ "freqs = np.array([ f_actual for (_1, _2, f_actual) in le_data ])\n",
+ "\n",
+ "acc_theory_sorted = [ acc for _f, acc in sorted(zip(freqs, acc_theory)) ]\n",
+ "acc_meas_sorted = [ acc for _f, acc in sorted(zip(freqs, acc_meas)) ]\n",
+ "freqs = sorted(freqs)\n",
+ "\n",
+ "ax.plot(freqs, acc_theory_sorted, label='Theory')\n",
+ "ax.plot(freqs, acc_meas_sorted, label='Measurements')\n",
+ " \n",
+ "ax.grid()\n",
+ "ax.set_xlabel('$f\\;[Hz]$')\n",
+ "ax2 = ax.twiny()\n",
+ "x1, x2 = ax.get_xlim()\n",
+ "ax2.set_xlim((x1*60, x2*60))\n",
+ "ax2.set_xlabel('$f\\;[rpm]$')\n",
+ "ax.set_ylabel('$a\\;[g]$')\n",
+ "ax3 = ax.twinx()\n",
+ "y1, y2 = ax.get_ylim()\n",
+ "ax3.set_ylim(y1*g, y2*g)\n",
+ "ax3.set_ylabel('$a\\;[ms^-1]$')\n",
+ "\n",
+ "ax.legend()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 957,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
"name": "stdout",
"output_type": "stream",
"text": [
- "Largest peak at 4.31 Hz / 259 rpm\n",
- "Mixing product 1 at 5.69 Hz / 341 rpm\n",
- "Mixing product 2 at 14.31 Hz / 859 rpm\n",
- "Mixing product 3 at 15.69 Hz / 941 rpm\n",
- "Mixing product 4 at 24.31 Hz / 1459 rpm\n",
- "Mixing product 5 at 25.69 Hz / 1541 rpm\n",
- "Mixing product 6 at 34.31 Hz / 2059 rpm\n"
+ "Loading run #33 with 3178 packets total, 125 distinct over 99.94346904754639s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 35 ... 161\n"
+ ]
+ },
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Largest peak at 4.33 Hz / 260 rpm\n",
+ "Mixing product 1 at 5.67 Hz / 340 rpm\n",
+ "Mixing product 2 at 14.33 Hz / 860 rpm\n",
+ "Mixing product 3 at 15.67 Hz / 940 rpm\n",
+ "Mixing product 4 at 24.33 Hz / 1460 rpm\n",
+ "Mixing product 5 at 25.67 Hz / 1540 rpm\n",
+ "Mixing product 6 at 34.33 Hz / 2060 rpm\n"
]
},
{
"data": {
"text/plain": [
- "<matplotlib.lines.Line2D at 0x7f3dfe41dc70>"
+ "4.3273542600896855"
]
},
- "execution_count": 716,
+ "execution_count": 957,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "tsa = np.array(timestamps)\n",
- "#s_min, s_max = 70, 120\n",
- "s_min, s_max = 40, 90\n",
- "speed_idx = (tsa > s_min) & (tsa < s_max)\n",
- "\n",
- "ts = np.arange(0, len(reassembled_values)) / sampling_rate\n",
- "fft_idx = (ts > s_min) & (ts < s_max)\n",
+ "def estimate_freq_fft(t, y, interval):\n",
+ " s_min, s_max = interval\n",
+ " fft_idx = (t*60 > s_min) & (t*60 < s_max)\n",
"\n",
- "N = fft_idx.sum()\n",
- "T = 1/sampling_rate\n",
- "x = np.linspace(0.0, N*T, N)\n",
- "y = reassembled_values[fft_idx] / mems_lsb_per_g # cut out beginning and that time we tapped the thing\n",
- "y *= scipy.signal.windows.blackmanharris(len(y))\n",
- "yf = scipy.fftpack.fft(y)\n",
- "xf = np.linspace(0.0, 1/(2*T), N//2)\n",
- "mag = 2/N * np.abs(yf[:N//2])\n",
+ " N = fft_idx.sum()\n",
+ " T = 1/sampling_rate\n",
+ " x = np.linspace(0.0, N*T, N)\n",
+ " y = y[fft_idx] / mems_lsb_per_g # cut out beginning and that time we tapped the thing\n",
+ " y *= scipy.signal.windows.blackmanharris(len(y))\n",
+ " yf = scipy.fftpack.fft(y)\n",
+ " xf = np.linspace(0.0, 1/(2*T), N//2)\n",
+ " mag = 2/N * np.abs(yf[:N//2])\n",
"\n",
- "fig, ax = plt.subplots()\n",
- "ax.grid()\n",
- "ax.plot(xf, mag)\n",
- "ax.set_ylabel('Magnitude [g]')\n",
- "ax.set_xlabel('Frequency [Hz]')\n",
+ " fig, ax = plt.subplots()\n",
+ " ax.grid()\n",
+ " ax.plot(xf, mag)\n",
+ " ax.set_ylabel('Magnitude [g]')\n",
+ " ax.set_xlabel('Frequency [Hz]')\n",
"\n",
- "peaks, _ = scipy.signal.find_peaks(mag, height=.1, distance=1/T)\n",
- "assert peaks.any()\n",
+ " peaks, _ = scipy.signal.find_peaks(mag, height=.1, distance=1/T)\n",
+ " assert peaks.any()\n",
"\n",
- "peak_data = sorted([ (-mag[idx], xf[idx]) for idx in peaks ])\n",
- "largest_peak_f = peak_data[0][1]\n",
- "print(f'Largest peak at {largest_peak_f:.2f} Hz / {largest_peak_f * 60:.0f} rpm')\n",
- "for i in range(1,4):\n",
- " mix1 = i*sampling_rate - largest_peak_f\n",
- " mix2 = i*sampling_rate + largest_peak_f\n",
- " print(f'Mixing product {2*i-1} at {mix1:.2f} Hz / {mix1 * 60:.0f} rpm')\n",
- " print(f'Mixing product {2*i} at {mix2:.2f} Hz / {mix2 * 60:.0f} rpm')\n",
+ " peak_data = sorted([ (-mag[idx], xf[idx]) for idx in peaks ])\n",
+ " largest_peak_f = peak_data[0][1]\n",
+ " print(f'Largest peak at {largest_peak_f:.2f} Hz / {largest_peak_f * 60:.0f} rpm')\n",
+ " for i in range(1,4):\n",
+ " mix1 = i*sampling_rate - largest_peak_f\n",
+ " mix2 = i*sampling_rate + largest_peak_f\n",
+ " print(f'Mixing product {2*i-1} at {mix1:.2f} Hz / {mix1 * 60:.0f} rpm')\n",
+ " print(f'Mixing product {2*i} at {mix2:.2f} Hz / {mix2 * 60:.0f} rpm')\n",
"\n",
- "ax.axvline(largest_peak_f, color='orange')"
+ " ax.axvline(largest_peak_f, color='orange')\n",
+ " return largest_peak_f\n",
+ " \n",
+ "t, y, packet_delays, packet_times = load_run(33, plot=False)\n",
+ "estimate_freq_fft(t, y, (30, 75))"
]
},
{
"cell_type": "code",
- "execution_count": 717,
+ "execution_count": 958,
"metadata": {
"scrolled": false
},
@@ -3351,10 +4305,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "interval: -0.06357678079289661\n",
- "scores: [0.0005478345240435783, 0.003917745560629984, 0.00382343194410793, 0.006241784699377939, 0.0074863442856081385, 0.008964752044997151, 0.008813512329706083, 0.008780553883453538, 0.008530974440876703]\n",
- "argmin: 1\n",
- "Average speed of rotation: 15.73 Hz / 944 rpm\n"
+ "Loading run #33 with 3178 packets total, 125 distinct over 99.94346904754639s\n"
]
},
{
@@ -4318,7 +5269,996 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 35 ... 161\n"
+ ]
+ }
+ ],
+ "source": [
+ "load_run(33, plot=True);"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 959,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -4330,21 +6270,1159 @@
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f3dfe402ca0>]"
+ "[<matplotlib.lines.Line2D at 0x7f3e0e5af160>]"
]
},
- "execution_count": 717,
+ "execution_count": 959,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
+ "fig, ax = plt.subplots()\n",
+ "x = np.linspace(0, 1, 100000)\n",
+ "y = 1 - (1 + np.tanh((x - 0.05)/0.05 * np.pi))/2\n",
+ "ax.plot(x, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1000,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"950\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " ===== Run 29: =====\n",
+ "Loading run #29 with 2387 packets total, 206 distinct over 194.01968002319336s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 827 ... 1071\n",
+ "interval: 0.10719954325502887\n",
+ "scores: [0.0005558591029225243, 0.007937380545979303, -0.034688942841427636, 0.009128952125600649, 0.013406031099251599, 0.013555935298953624, 0.017543481008845643, 0.017016779430178704, 0.01657709203008989]\n",
+ "argmin: 3\n",
+ "min score -0.034688942841427636 0.006114450132147767\n",
+ "Average speed of rotation: 3.11 Hz / 187 rpm\n",
+ "\n",
+ " f_meas = 3.10 Hz; f_est = 3.11 Hz\n",
+ " Δabs = 0.01 Hz; Δrel = +0.3 %\n",
+ "\n",
+ " ===== Run 28: =====\n",
+ "Loading run #28 with 4918 packets total, 178 distinct over 161.5061011314392s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 611 ... 813\n",
+ "interval: 0.11439170940941061\n",
+ "scores: [-0.020534204449181033, -0.03948834332572777, 0.008701765576176747, 0.013951642455491747, 0.014883935285322263, 0.013919464173338898, 0.013597797966206103, 0.01283288815134905, 0.012482191795223349]\n",
+ "argmin: 2\n",
+ "min score -0.03948834332572777 0.003962460736427981\n",
+ "Average speed of rotation: 4.37 Hz / 262 rpm\n",
+ "\n",
+ " f_meas = 4.35 Hz; f_est = 4.37 Hz\n",
+ " Δabs = 0.02 Hz; Δrel = +0.5 %\n",
+ "\n",
+ " ===== Run 37: =====\n",
+ "Loading run #37 with 3070 packets total, 144 distinct over 117.43898510932922s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 326 ... 473\n",
+ "interval: 0.14865745248471265\n",
+ "scores: [-0.03883825341506492, 0.005310783081280478, 0.008339889910074037, 0.012661676804576305, 0.012709861511978487, 0.013085760738242736, 0.012322417269530055, 0.01163783853233394, 0.011025320714842681]\n",
+ "argmin: 1\n",
+ "min score -0.03883825341506492 -0.19352513539180108\n",
+ "Average speed of rotation: 6.73 Hz / 404 rpm\n",
+ "\n",
+ " f_meas = 6.67 Hz; f_est = 6.73 Hz\n",
+ " Δabs = 0.06 Hz; Δrel = +0.9 %\n",
+ "\n",
+ " ===== Run 30: =====\n",
+ "Loading run #30 with 2208 packets total, 198 distinct over 166.86816382408142s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 1079 ... 1288\n",
+ "interval: 0.14157585656540028\n",
+ "scores: [-0.027368924365523392, 0.0016046408793783343, 6.757317985323834e-05, 0.010033377011136338, 0.014202212278658977, 0.01690264817464519, 0.016602774129523788, 0.016489898206424946, 0.01562597856556622]\n",
+ "argmin: 1\n",
+ "min score -0.027368924365523392 -0.1252939758810193\n",
+ "Average speed of rotation: 7.06 Hz / 424 rpm\n",
+ "\n",
+ " f_meas = 7.04 Hz; f_est = 7.06 Hz\n",
+ " Δabs = 0.02 Hz; Δrel = +0.3 %\n",
+ "\n",
+ " ===== Run 31: =====\n",
+ "Loading run #31 with 2630 packets total, 157 distinct over 126.19650292396545s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 1316 ... 1474\n",
+ "interval: 0.13094824532824215\n",
+ "scores: [-0.03704675515805195, 0.006079322222570231, 0.006225731403203891, 0.007881091442639427, 0.010594872980404482, 0.01181994722739787, 0.011899512695214984, 0.012162509479493641, 0.011532909467429079]\n",
+ "argmin: 1\n",
+ "min score -0.03704675515805195 -0.19455134377560843\n",
+ "Average speed of rotation: 7.64 Hz / 458 rpm\n",
+ "\n",
+ " f_meas = 7.57 Hz; f_est = 7.64 Hz\n",
+ " Δabs = 0.07 Hz; Δrel = +0.9 %\n",
+ "\n",
+ " ===== Run 34: =====\n",
+ "Loading run #34 with 2714 packets total, 121 distinct over 97.30304408073425s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 165 ... 287\n",
+ "interval: 0.11474772130686393\n",
+ "scores: [-0.030846569646590577, -0.017939041958299002, 0.007585993694854823, 0.013487796252691883, 0.01286325763359304, 0.012345763316803614, 0.011619541945226932, 0.010974011837158768, 0.010396432266781988]\n",
+ "argmin: 1\n",
+ "min score -0.030846569646590577 -0.09545980709610284\n",
+ "Average speed of rotation: 8.71 Hz / 523 rpm\n",
+ "\n",
+ " f_meas = 8.62 Hz; f_est = 8.71 Hz\n",
+ " Δabs = 0.09 Hz; Δrel = +1.1 %\n",
+ "\n",
+ " ===== Run 38: =====\n",
+ "Loading run #38 with 2317 packets total, 122 distinct over 103.3755898475647s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 475 ... 604\n",
+ "interval: 0.10489854346020394\n",
+ "scores: [-0.029808429081348096, -0.022247814228522737, 0.007496451366422777, 0.012847680228334563, 0.012120698169116668, 0.01148795434824668, 0.0108151380653151, 0.010214297061686485, 0.009676702479492458]\n",
+ "argmin: 1\n",
+ "min score -0.029808429081348096 -0.08125594859438061\n",
+ "Average speed of rotation: 9.53 Hz / 572 rpm\n",
+ "\n",
+ " f_meas = 9.43 Hz; f_est = 9.53 Hz\n",
+ " Δabs = 0.10 Hz; Δrel = +1.1 %\n",
+ "\n",
+ " ===== Run 32: =====\n",
+ "Loading run #32 with 2643 packets total, 118 distinct over 98.81923913955688s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 3 ... 1583\n",
+ "interval: 0.09441178519979387\n",
+ "scores: [-0.013690197808912317, -0.008608471942849465, 0.00431677808670242, 0.007819524539326253, 0.007824114618254871, 0.007696014525605405, 0.007352130944008647, 0.007048798098339794, 0.006677808724742963]\n",
+ "argmin: 1\n",
+ "min score -0.013690197808912317 -0.038159149663930074\n",
+ "Average speed of rotation: 10.59 Hz / 636 rpm\n",
+ "\n",
+ " f_meas = 10.40 Hz; f_est = 10.59 Hz\n",
+ " Δabs = 0.19 Hz; Δrel = +1.8 %\n",
+ "\n",
+ " ===== Run 39: =====\n",
+ "Loading run #39 with 1429 packets total, 129 distinct over 104.99669194221497s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 606 ... 737\n",
+ "interval: -0.009543333906374466\n",
+ "scores: [0.00016699475726220442, 0.00015527347855214557, 0.0006494893315487613, 0.00013309155304469622, 0.0008010865133540054, 0.0010090902176491685, 0.001234839163051902, 0.00010351565236809708, 0.0014523737093152392]\n",
+ "argmin: 8\n",
+ "min score 0.00010351565236809708 0.0013446078569502677\n",
+ "Average speed of rotation: 13.10 Hz / 786 rpm\n",
+ "\n",
+ " f_meas = 13.10 Hz; f_est = 13.10 Hz\n",
+ " Δabs = -0.00 Hz; Δrel = -0.0 %\n",
+ "\n",
+ " ===== Run 33: =====\n",
+ "Loading run #33 with 3178 packets total, 125 distinct over 99.94346904754639s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 35 ... 161\n",
+ "interval: 0.09687252539136751\n",
+ "scores: [-0.004649921628008072, -0.012634045995330379, 0.0037816457952707543, 0.0017246285208280352, 0.009875890071400597, 0.011254914748918448, 0.012497966748572316, 0.013301204816616601, 0.012601141405215724]\n",
+ "argmin: 2\n",
+ "min score -0.012634045995330379 0.013042674363101692\n",
+ "Average speed of rotation: 5.16 Hz / 310 rpm\n",
+ "\n",
+ " f_meas = 16.10 Hz; f_est = 5.16 Hz\n",
+ " Δabs = -10.94 Hz; Δrel = -67.9 %\n"
+ ]
+ }
+ ],
+ "source": [
"def calc_rspeed_deltas(target_deltas):\n",
" target_deltas = np.array(target_deltas)\n",
- " target_deltas = target_deltas[0:-int(len(target_deltas)*0.1)]\n",
- " target_deltas = target_deltas[target_deltas > 1/30]\n",
+ " target_deltas = target_deltas[target_deltas > 1/50]\n",
+ " target_deltas = target_deltas[0:int(len(target_deltas)*0.9)]\n",
" def fun(x):\n",
- " return np.sqrt(np.mean([ ((val + 0.5*x[0]) % x[0] - 0.5*x[0])**2 for val in target_deltas ]))\n",
+ " rms = np.sqrt(np.mean([ ((val + 0.5*x[0]) % x[0] - 0.5*x[0])**2 for val in target_deltas ]))\n",
+ " #matches = (target_deltas > 0.5*x[0]).mean()\n",
+ " matches1 = ((target_deltas > (0.9*x[0])) & (target_deltas < (1.1*x[0]))).mean()\n",
+ " matches2 = ((target_deltas > (1.9*x[0])) & (target_deltas < (2.1*x[0]))).mean()\n",
+ " #matchesh= ((target_deltas > (0.45*x[0])) & (target_deltas < (0.55*x[0]))).mean()\n",
+ " #matches3 = ((target_deltas > (2.9*x[0])) & (target_deltas < (3.1*x[0]))).mean()\n",
+ " #penalty = 1 - (1 + np.tanh((matches1 - 0.05)/0.05 * np.pi))/2\n",
+ " return rms - 0.5*matches1 - 0.25*matches2 #+ 0.125*matches3 #+ 0.1*penalty\n",
"\n",
" #def accept(x_old, x_new, **kwargs):\n",
" # return 1/30 < x_new[0] and x_new[0] < 1\n",
@@ -4357,17 +7435,1055 @@
" print('scores:', scores)\n",
" argmin = np.argmin(scores)+1\n",
" print('argmin:', argmin)\n",
+ " print('min score', min(scores), fun([interval*0.5]))\n",
" interval = np.abs(interval) * argmin\n",
" print(f'Average speed of rotation: {1/interval:.2f} Hz / {60 / interval:.0f} rpm')\n",
" return interval\n",
"\n",
- "target_deltas = sorted(np.array(deltas)[speed_idx[:-1]])\n",
- "interval = calc_rspeed_deltas(target_deltas)\n",
+ "def estimate_freq_delay(delays, times, interval, ax=None):\n",
+ " s_min, s_max = interval\n",
+ " tsa = np.array(times)\n",
+ " idx = (tsa > s_min) & (tsa < s_max)\n",
+ "\n",
+ " target_deltas = sorted(np.array(delays)[idx[:-1]])\n",
+ " interval = calc_rspeed_deltas(target_deltas)\n",
+ " \n",
+ " if ax is not None:\n",
+ " ax.grid()\n",
+ " for i in range(1, int(max(target_deltas)//interval)):\n",
+ " ax.axhline(i*interval, color='orange')\n",
+ " ax.plot(target_deltas)\n",
+ " return 1/interval\n",
+ " \n",
+ "run_spans = {\n",
+ " 28: (4.35, 70, 120),\n",
+ " 29: (3.10, 70, 120),\n",
+ " 30: (7.04, 40, 120),\n",
+ " 31: (7.57, 30, 100),\n",
+ " 32: (10.4, 40, 90),\n",
+ " 33: (16.1, 40, 75),\n",
+ " 34: (8.62, 20, 80),\n",
+ " 37: (6.67, 20, 90),\n",
+ " 38: (9.43, 20, 80),\n",
+ " 39: (13.1, 20, 85),\n",
+ " }\n",
+ "\n",
+ "deltas = []\n",
+ "fig, axs = plt.subplots(5, 2, figsize=(9.5, 14))\n",
+ "for (run_id, (freq_meas, t_start, t_end)), ax in zip(sorted(run_spans.items(), key=lambda x: x[1][0]), axs.flatten()):\n",
+ " \n",
+ " print()\n",
+ " print(f' ===== Run {run_id}: =====')\n",
+ " t, y, packet_delay, packet_times = load_run(run_id, plot=False)\n",
+ " freq_est = estimate_freq_delay(packet_delay, packet_times, (t_start, t_end), ax=ax)\n",
+ " ax.set_title(f'Run {run_id} @ $f_{{meas}} = {freq_meas:02.2f} Hz$ / $f_{{est}} = {freq_est:02.2f} Hz$')\n",
+ " print()\n",
+ " print(f' f_meas = {freq_meas:02.2f} Hz; f_est = {freq_est:02.2f} Hz')\n",
+ " delta_abs = freq_est - freq_meas\n",
+ " delta_rel = freq_est/freq_meas-1\n",
+ " deltas.append((delta_abs, delta_rel))\n",
+ " print(f' Δabs = {delta_abs:02.2f} Hz; Δrel = {delta_rel*100:+.1f} %')\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 995,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 0, '$f\\\\;[Hz]$')"
+ ]
+ },
+ "execution_count": 995,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
"fig, ax = plt.subplots()\n",
+ "#freqs = sorted([ f for f, _1, _2 in run_spans.values() ])\n",
+ "#ax.plot(freqs[:-1], [ delta_abs for delta_abs, _delta_rel in deltas[:-1] ])\n",
+ "#ax.set_ylabel('$\\Delta_{abs}\\;[Hz]$')\n",
+ "\n",
+ "#ax = ax.twinx()\n",
"ax.grid()\n",
- "for i in range(int(max(target_deltas)//interval)):\n",
- " ax.axhline(i*interval, color='orange')\n",
- "ax.plot(target_deltas)"
+ "ax.plot(freqs[:-1], [ delta_rel*100 for _delta_abs, delta_rel in deltas[:-1] ])#, color='orange')\n",
+ "ax.set_ylabel('$\\Delta_{rel}\\;[\\%]$')\n",
+ "\n",
+ "ax.set_xlabel('$f\\;[Hz]$')"
]
},
{