summaryrefslogtreecommitdiff
path: root/DSP/Source/FastMathFunctions/arm_sin_f32.c
blob: 97c69029c22f4029fd1a9242d158bb14010161f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_sin_f32.c
 * Description:  Fast sine calculation for floating-point values
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"
#include "arm_common_tables.h"

/**
  @ingroup groupFastMath
 */

/**
  @defgroup sin Sine

  Computes the trigonometric sine function using a combination of table lookup
  and linear interpolation.  There are separate functions for
  Q15, Q31, and floating-point data types.
  The input to the floating-point version is in radians while the
  fixed-point Q15 and Q31 have a scaled input with the range
  [0 +0.9999] mapping to [0 2*pi).  The fixed-point range is chosen so that a
  value of 2*pi wraps around to 0.

  The implementation is based on table lookup using 256 values together with linear interpolation.
  The steps used are:
   -# Calculation of the nearest integer table index
   -# Compute the fractional portion (fract) of the table index.
   -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>

  where
  <pre>
     b = Table[index];
     c = Table[index+1];
  </pre>
 */

/**
  @addtogroup sin
  @{
 */

/**
  @brief         Fast approximation to the trigonometric sine function for floating-point data.
  @param[in]     x  input value in radians.
  @return        sin(x)
 */

float32_t arm_sin_f32(
  float32_t x)
{
  float32_t sinVal, fract, in;                   /* Temporary input, output variables */
  uint16_t index;                                /* Index variable */
  float32_t a, b;                                /* Two nearest output values */
  int32_t n;
  float32_t findex;

  /* input x is in radians */
  /* Scale input to [0 1] range from [0 2*PI] , divide input by 2*pi */
  in = x * 0.159154943092f;

  /* Calculation of floor value of input */
  n = (int32_t) in;

  /* Make negative values towards -infinity */
  if (in < 0.0f)
  {
    n--;
  }

  /* Map input value to [0 1] */
  in = in - (float32_t) n;

  /* Calculation of index of the table */
  findex = (float32_t)FAST_MATH_TABLE_SIZE * in;
  index = (uint16_t)findex;

  /* when "in" is exactly 1, we need to rotate the index down to 0 */
  if (index >= FAST_MATH_TABLE_SIZE) {
    index = 0;
    findex -= (float32_t)FAST_MATH_TABLE_SIZE;
  }

  /* fractional value calculation */
  fract = findex - (float32_t) index;

  /* Read two nearest values of input value from the sin table */
  a = sinTable_f32[index];
  b = sinTable_f32[index+1];

  /* Linear interpolation process */
  sinVal = (1.0f - fract) * a + fract * b;

  /* Return output value */
  return (sinVal);
}

/**
  @} end of sin group
 */