diff options
author | rihab kouki <rihab.kouki@st.com> | 2020-07-28 11:24:49 +0100 |
---|---|---|
committer | rihab kouki <rihab.kouki@st.com> | 2020-07-28 11:24:49 +0100 |
commit | 96d6da4e252b06dcfdc041e7df23e86161c33007 (patch) | |
tree | a262f59bb1db7ec7819acae435f5049cbe5e2354 /DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c | |
parent | 9f95ff5b6ba01db09552b84a0ab79607060a2666 (diff) | |
download | st-cmsis-core-lowfat-master.tar.gz st-cmsis-core-lowfat-master.tar.bz2 st-cmsis-core-lowfat-master.zip |
Diffstat (limited to 'DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c')
-rw-r--r-- | DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c | 191 |
1 files changed, 113 insertions, 78 deletions
diff --git a/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c b/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c index 95aaf1e..84812dc 100644 --- a/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c +++ b/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c @@ -3,13 +3,13 @@ * Title: arm_cmplx_mag_f32.c * Description: Floating-point complex magnitude * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 + * $Date: 18. March 2019 + * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * @@ -29,125 +29,160 @@ #include "arm_math.h" /** - * @ingroup groupCmplxMath + @ingroup groupCmplxMath */ /** - * @defgroup cmplx_mag Complex Magnitude - * - * Computes the magnitude of the elements of a complex data vector. - * - * The <code>pSrc</code> points to the source data and - * <code>pDst</code> points to the where the result should be written. - * <code>numSamples</code> specifies the number of complex samples - * in the input array and the data is stored in an interleaved fashion - * (real, imag, real, imag, ...). - * The input array has a total of <code>2*numSamples</code> values; - * the output array has a total of <code>numSamples</code> values. - * The underlying algorithm is used: - * - * <pre> - * for(n=0; n<numSamples; n++) { - * pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); - * } - * </pre> - * - * There are separate functions for floating-point, Q15, and Q31 data types. + @defgroup cmplx_mag Complex Magnitude + + Computes the magnitude of the elements of a complex data vector. + + The <code>pSrc</code> points to the source data and + <code>pDst</code> points to the where the result should be written. + <code>numSamples</code> specifies the number of complex samples + in the input array and the data is stored in an interleaved fashion + (real, imag, real, imag, ...). + The input array has a total of <code>2*numSamples</code> values; + the output array has a total of <code>numSamples</code> values. + + The underlying algorithm is used: + + <pre> + for (n = 0; n < numSamples; n++) { + pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); + } + </pre> + + There are separate functions for floating-point, Q15, and Q31 data types. */ /** - * @addtogroup cmplx_mag - * @{ + @addtogroup cmplx_mag + @{ */ + /** - * @brief Floating-point complex magnitude. - * @param[in] *pSrc points to complex input buffer - * @param[out] *pDst points to real output buffer - * @param[in] numSamples number of complex samples in the input vector - * @return none. - * + @brief Floating-point complex magnitude. + @param[in] pSrc points to input vector + @param[out] pDst points to output vector + @param[in] numSamples number of samples in each vector + @return none */ - void arm_cmplx_mag_f32( - float32_t * pSrc, - float32_t * pDst, - uint32_t numSamples) + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples) { - float32_t realIn, imagIn; /* Temporary variables to hold input values */ + uint32_t blkCnt; /* loop counter */ + float32_t real, imag; /* Temporary variables to hold input values */ -#if defined (ARM_MATH_DSP) +#if defined(ARM_MATH_NEON) - /* Run the below code for Cortex-M4 and Cortex-M3 */ - uint32_t blkCnt; /* loop counter */ + float32x4x2_t vecA; + float32x4_t vRealA; + float32x4_t vImagA; + float32x4_t vMagSqA; - /*loop Unrolling */ - blkCnt = numSamples >> 2U; + float32x4x2_t vecB; + float32x4_t vRealB; + float32x4_t vImagB; + float32x4_t vMagSqB; + + /* Loop unrolling: Compute 8 outputs at a time */ + blkCnt = numSamples >> 3; - /* First part of the processing with loop unrolling. Compute 4 outputs at a time. - ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { + /* out = sqrt((real * real) + (imag * imag)) */ - /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ - realIn = *pSrc++; - imagIn = *pSrc++; - /* store the result in the destination buffer. */ - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); + vecA = vld2q_f32(pSrc); + pSrc += 8; + + vecB = vld2q_f32(pSrc); + pSrc += 8; - realIn = *pSrc++; - imagIn = *pSrc++; - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); + vRealA = vmulq_f32(vecA.val[0], vecA.val[0]); + vImagA = vmulq_f32(vecA.val[1], vecA.val[1]); + vMagSqA = vaddq_f32(vRealA, vImagA); - realIn = *pSrc++; - imagIn = *pSrc++; - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); + vRealB = vmulq_f32(vecB.val[0], vecB.val[0]); + vImagB = vmulq_f32(vecB.val[1], vecB.val[1]); + vMagSqB = vaddq_f32(vRealB, vImagB); - realIn = *pSrc++; - imagIn = *pSrc++; - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); + /* Store the result in the destination buffer. */ + vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA)); + pDst += 4; + vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB)); + pDst += 4; /* Decrement the loop counter */ blkCnt--; } - /* If the numSamples is not a multiple of 4, compute any remaining output samples here. - ** No loop unrolling is used. */ - blkCnt = numSamples % 0x4U; + blkCnt = numSamples & 7; + +#else + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ - realIn = *pSrc++; - imagIn = *pSrc++; - /* store the result in the destination buffer. */ - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); - /* Decrement the loop counter */ + real = *pSrc++; + imag = *pSrc++; + + /* store result in destination buffer. */ + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + /* Decrement loop counter */ blkCnt--; } + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + #else - /* Run the below code for Cortex-M0 */ + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ +#endif /* #if defined(ARM_MATH_NEON) */ - while (numSamples > 0U) + while (blkCnt > 0U) { - /* out = sqrt((real * real) + (imag * imag)) */ - realIn = *pSrc++; - imagIn = *pSrc++; - /* store the result in the destination buffer. */ - arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); + /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ - /* Decrement the loop counter */ - numSamples--; - } + real = *pSrc++; + imag = *pSrc++; + + /* store result in destination buffer. */ + arm_sqrt_f32((real * real) + (imag * imag), pDst++); -#endif /* #if defined (ARM_MATH_DSP) */ + /* Decrement loop counter */ + blkCnt--; + } } /** - * @} end of cmplx_mag group + @} end of cmplx_mag group */ |