summaryrefslogtreecommitdiff
path: root/dxf_export/bezmisc.py
blob: e663fa67f57e23de3dba33771e5565fb11e0ba6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python
'''
Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru
Copyright (C) 2005 Aaron Spike, aaron@ekips.org

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
'''

import math, cmath

def rootWrapper(a,b,c,d):
    if a:
        # Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
        a,b,c = (b/a, c/a, d/a)
        m = 2.0*a**3 - 9.0*a*b + 27.0*c
        k = a**2 - 3.0*b
        n = m**2 - 4.0*k**3
        w1 = -.5 + .5*cmath.sqrt(-3.0)
        w2 = -.5 - .5*cmath.sqrt(-3.0)
        if n < 0:
            m1 = pow(complex((m+cmath.sqrt(n))/2),1./3)
            n1 = pow(complex((m-cmath.sqrt(n))/2),1./3)
        else:
            if m+math.sqrt(n) < 0:
                m1 = -pow(-(m+math.sqrt(n))/2,1./3)
            else:
                m1 = pow((m+math.sqrt(n))/2,1./3)
            if m-math.sqrt(n) < 0:
                n1 = -pow(-(m-math.sqrt(n))/2,1./3)
            else:
                n1 = pow((m-math.sqrt(n))/2,1./3)
        x1 = -1./3 * (a + m1 + n1)
        x2 = -1./3 * (a + w1*m1 + w2*n1)
        x3 = -1./3 * (a + w2*m1 + w1*n1)
        return (x1,x2,x3)
    elif b:
        det=c**2.0-4.0*b*d
        if det:
            return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
        else:
            return -c/(2.0*b),
    elif c:
        return 1.0*(-d/c),
    return ()

def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
    #parametric bezier
    x0=bx0
    y0=by0
    cx=3*(bx1-x0)
    bx=3*(bx2-bx1)-cx
    ax=bx3-x0-cx-bx
    cy=3*(by1-y0)
    by=3*(by2-by1)-cy
    ay=by3-y0-cy-by

    return ax,ay,bx,by,cx,cy,x0,y0
    #ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))

def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
    #parametric line
    dd=lx1
    cc=lx2-lx1
    bb=ly1
    aa=ly2-ly1

    if aa:
        coef1=cc/aa
        coef2=1
    else:
        coef1=1
        coef2=aa/cc

    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    #cubic intersection coefficients
    a=coef1*ay-coef2*ax
    b=coef1*by-coef2*bx
    c=coef1*cy-coef2*cx
    d=coef1*(y0-bb)-coef2*(x0-dd)

    roots = rootWrapper(a,b,c,d)
    retval = []
    for i in roots:
        if type(i) is complex and i.imag==0:
            i = i.real
        if type(i) is not complex and 0<=i<=1:
            retval.append(bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),i))
    return retval

def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    x=ax*(t**3)+bx*(t**2)+cx*t+x0
    y=ay*(t**3)+by*(t**2)+cy*t+y0
    return x,y

def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    dx=3*ax*(t**2)+2*bx*t+cx
    dy=3*ay*(t**2)+2*by*t+cy
    return dx,dy

def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)):
    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    #quadratic coefficents of slope formula
    if dx:
        slope = 1.0*(dy/dx)
        a=3*ay-3*ax*slope
        b=2*by-2*bx*slope
        c=cy-cx*slope
    elif dy:
        slope = 1.0*(dx/dy)
        a=3*ax-3*ay*slope
        b=2*bx-2*by*slope
        c=cx-cy*slope
    else:
        return []

    roots = rootWrapper(0,a,b,c)
    retval = []
    for i in roots:
        if type(i) is complex and i.imag==0:
            i = i.real
        if type(i) is not complex and 0<=i<=1:
            retval.append(i)
    return retval

def tpoint((x1,y1),(x2,y2),t):
    return x1+t*(x2-x1),y1+t*(y2-y1)
def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
    m1=tpoint((bx0,by0),(bx1,by1),t)
    m2=tpoint((bx1,by1),(bx2,by2),t)
    m3=tpoint((bx2,by2),(bx3,by3),t)
    m4=tpoint(m1,m2,t)
    m5=tpoint(m2,m3,t)
    m=tpoint(m4,m5,t)
    
    return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))

'''
Approximating the arc length of a bezier curve
according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>

if:
    L1 = |P0 P1| +|P1 P2| +|P2 P3| 
    L0 = |P0 P3|
then: 
    L = 1/2*L0 + 1/2*L1
    ERR = L1-L0
ERR approaches 0 as the number of subdivisions (m) increases
    2^-4m

Reference:
Jens Gravesen <gravesen@mat.dth.dk>
"Adaptive subdivision and the length of Bezier curves"
mat-report no. 1992-10, Mathematical Institute, The Technical
University of Denmark. 
'''
def pointdistance((x1,y1),(x2,y2)):
    return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def Gravesen_addifclose(b, len, error = 0.001):
    box = 0
    for i in range(1,4):
        box += pointdistance(b[i-1], b[i])
    chord = pointdistance(b[0], b[3])
    if (box - chord) > error:
        first, second = beziersplitatt(b, 0.5)
        Gravesen_addifclose(first, len, error)
        Gravesen_addifclose(second, len, error)
    else:
        len[0] += (box / 2.0) + (chord / 2.0)
def bezierlengthGravesen(b, error = 0.001):
    len = [0]
    Gravesen_addifclose(b, len, error)
    return len[0]

# balf = Bezier Arc Length Function
balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
def balf(t):
    retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
    return math.sqrt(retval)

def Simpson(f, a, b, n_limit, tolerance):
    n = 2
    multiplier = (b - a)/6.0
    endsum = f(a) + f(b)
    interval = (b - a)/2.0
    asum = 0.0
    bsum = f(a + interval)
    est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
    est0 = 2.0 * est1
    #print multiplier, endsum, interval, asum, bsum, est1, est0
    while n < n_limit and abs(est1 - est0) > tolerance:
        n *= 2
        multiplier /= 2.0
        interval /= 2.0
        asum += bsum
        bsum = 0.0
        est0 = est1
        for i in xrange(1, n, 2):
            bsum += f(a + (i * interval))
            est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
    #print multiplier, endsum, interval, asum, bsum, est1, est0
    return est1

def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001):
    global balfax,balfbx,balfcx,balfay,balfby,balfcy
    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
    return Simpson(balf, 0.0, 1.0, 4096, tolerance)

def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001):
    global balfax,balfbx,balfcx,balfay,balfby,balfcy
    ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
    balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
    t = 1.0
    tdiv = t
    curlen = Simpson(balf, 0.0, t, 4096, tolerance)
    targetlen = l * curlen
    diff = curlen - targetlen
    while abs(diff) > tolerance:
        tdiv /= 2.0
        if diff < 0:
            t += tdiv
        else:
            t -= tdiv            
        curlen = Simpson(balf, 0.0, t, 4096, tolerance)
        diff = curlen - targetlen
    return t

#default bezier length method
bezierlength = bezierlengthSimpson

if __name__ == '__main__':
    import timing
    #print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
    #print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
    tol = 0.00000001
    curves = [((0,0),(1,5),(4,5),(5,5)),
            ((0,0),(0,0),(5,0),(10,0)),
            ((0,0),(0,0),(5,1),(10,0)),
            ((-10,0),(0,0),(10,0),(10,10)),
            ((15,10),(0,0),(10,0),(-5,10))]
    '''
    for curve in curves:
        timing.start()
        g = bezierlengthGravesen(curve,tol)
        timing.finish()
        gt = timing.micro()

        timing.start()
        s = bezierlengthSimpson(curve,tol)
        timing.finish()
        st = timing.micro()

        print g, gt
        print s, st
    '''
    for curve in curves:
        print beziertatlength(curve,0.5)


# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99