aboutsummaryrefslogtreecommitdiff
path: root/gerberex/dxf_path.py
blob: 960b05445f4ca2a2f1f92c8c127b268aa1b469c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>

from gerber.utils import inch, metric, write_gerber_value
from gerber.cam import FileSettings
from gerberex.utility import is_equal_point, is_equal_value, normalize_vec2d, dot_vec2d
from gerberex.excellon import CoordinateStmtEx

class DxfPath(object):
    def __init__(self, statements, error_range=0):
        self.statements = statements
        self.error_range = error_range
        self.bounding_box = statements[0].bounding_box
        self.containers = []
        for statement in statements[1:]:
            self._merge_bounding_box(statement.bounding_box)
    
    @property
    def start(self):
        return self.statements[0].start
    
    @property
    def end(self):
        return self.statements[-1].end

    @property
    def is_closed(self):
        if len(self.statements) == 1:
            return self.statements[0].is_closed
        else:
            return is_equal_point(self.start, self.end, self.error_range)
    
    def is_equal_to(self, target, error_range=0):
        if not isinstance(target, DxfPath):
            return False
        if len(self.statements) != len(target.statements):
            return False
        if is_equal_point(self.start, target.start, error_range) and \
           is_equal_point(self.end, target.end, error_range):
            for i in range(0, len(self.statements)):
               if not self.statements[i].is_equal_to(target.statements[i], error_range):
                   return False
            return True
        elif is_equal_point(self.start, target.end, error_range) and \
             is_equal_point(self.end, target.start, error_range):
            for i in range(0, len(self.statements)):
               if not self.statements[i].is_equal_to(target.statements[-1 - i], error_range):
                   return False
            return True
        return False
    
    def contain(self, target, error_range=0):
        for statement in self.statements:
            if statement.is_equal_to(target, error_range):
                return True
        else:
            return False

    def to_inch(self):
        self.error_range = inch(self.error_range)
        for statement in self.statements:
            statement.to_inch()

    def to_metric(self):
        self.error_range = metric(self.error_range)
        for statement in self.statements:
            statement.to_metric()

    def offset(self, offset_x, offset_y):
        for statement in self.statements:
            statement.offset(offset_x, offset_y)

    def rotate(self, angle, center=(0, 0)):
        for statement in self.statements:
            statement.rotate(angle, center)

    def reverse(self):
        rlist = []
        for statement in reversed(self.statements):
            statement.reverse()
            rlist.append(statement)
        self.statements = rlist
    
    def merge(self, element, error_range=0):
        if self.is_closed or element.is_closed:
            return False
        if not error_range:
            error_range = self.error_range
        if is_equal_point(self.end, element.start, error_range):
            return self._append_at_end(element, error_range)
        elif is_equal_point(self.end, element.end, error_range):
            element.reverse()
            return self._append_at_end(element, error_range)
        elif is_equal_point(self.start, element.end, error_range):
            return self._insert_on_top(element, error_range)
        elif is_equal_point(self.start, element.start, error_range):
            element.reverse()
            return self._insert_on_top(element, error_range)
        else:
            return False
    
    def _append_at_end(self, element, error_range=0):
        if isinstance(element, DxfPath):
            if self.is_equal_to(element, error_range):
                return False
            for i in range(0, min(len(self.statements), len(element.statements))):
                if not self.statements[-1 - i].is_equal_to(element.statements[i]):
                    break
            for j in range(0, min(len(self.statements), len(element.statements))):
                if not self.statements[j].is_equal_to(element.statements[-1 - j]):
                    break
            if i + j >= len(element.statements):
                return False
            mergee = list(element.statements)
            if i > 0:
                del mergee[0:i]
                del self.statements[-i]
            if j > 0:
                del mergee[-j]
                del self.statements[0:j]
            for statement in mergee:
                self._merge_bounding_box(statement.bounding_box)
            self.statements.extend(mergee)
            return True
        else:
            if self.statements[-1].is_equal_to(element, error_range) or \
               self.statements[0].is_equal_to(element, error_range):
                return False
            self._merge_bounding_box(element.bounding_box)
            self.statements.appen(element)
            return True

    def _insert_on_top(self, element, error_range=0):
        if isinstance(element, DxfPath):
            if self.is_equal_to(element, error_range):
                return False
            for i in range(0, min(len(self.statements), len(element.statements))):
                if not self.statements[-1 - i].is_equal_to(element.statements[i]):
                    break
            for j in range(0, min(len(self.statements), len(element.statements))):
                if not self.statements[j].is_equal_to(element.statements[-1 - j]):
                    break
            if i + j >= len(element.statements):
                return False
            mergee = list(element.statements)
            if i > 0:
                del mergee[0:i]
                del self.statements[-i]
            if j > 0:
                del mergee[-j]
                del self.statements[0:j]
            self.statements[0:0] = mergee
            return True
        else:
            if self.statements[-1].is_equal_to(element, error_range) or \
               self.statements[0].is_equal_to(element, error_range):
                return False
            self.statements.insert(0, element)
            return True

    def _merge_bounding_box(self, box):
        self.bounding_box = (min(self.bounding_box[0], box[0]),
                             min(self.bounding_box[1], box[1]),
                             max(self.bounding_box[2], box[2]),
                             max(self.bounding_box[3], box[3]))

    def may_be_in_collision(self, path):
        if self.bounding_box[0] >= path.bounding_box[2] or \
           self.bounding_box[1] >= path.bounding_box[3] or \
           self.bounding_box[2] <= path.bounding_box[0] or \
           self.bounding_box[3] <= path.bounding_box[1]:
            return False
        else:
            return True

    def to_gerber(self, settings=FileSettings(), pitch=0, width=0):
        from gerberex.dxf import DxfArcStatement
        if pitch == 0:
            x0, y0 = self.statements[0].start
            gerber = 'G01*\nX{0}Y{1}D02*\nG75*'.format(
                write_gerber_value(x0, settings.format,
                                   settings.zero_suppression),
                write_gerber_value(y0, settings.format,
                                   settings.zero_suppression),
            )

            for statement in self.statements:
                x0, y0 = statement.start
                x1, y1 = statement.end
                if isinstance(statement, DxfArcStatement):
                    xc, yc = statement.center
                    gerber += '\nG{0}*\nX{1}Y{2}I{3}J{4}D01*'.format(
                        '03' if statement.end_angle > statement.start_angle else '02',
                        write_gerber_value(x1, settings.format,
                                           settings.zero_suppression),
                        write_gerber_value(y1, settings.format,
                                           settings.zero_suppression),
                        write_gerber_value(xc - x0, settings.format,
                                           settings.zero_suppression),
                        write_gerber_value(yc - y0, settings.format,
                                           settings.zero_suppression)
                    )
                else:
                    gerber += '\nG01*\nX{0}Y{1}D01*'.format(
                        write_gerber_value(x1, settings.format,
                                           settings.zero_suppression),
                        write_gerber_value(y1, settings.format,
                                           settings.zero_suppression),
                    )
        else:
            def ploter(x, y):
                return 'X{0}Y{1}D03*\n'.format(
                    write_gerber_value(x, settings.format,
                                       settings.zero_suppression),
                    write_gerber_value(y, settings.format,
                                          settings.zero_suppression),
                )
            gerber = self._plot_dots(pitch, width, ploter)

        return gerber

    def to_excellon(self, settings=FileSettings(), pitch=0, width=0):
        from gerberex.dxf import DxfArcStatement
        if pitch == 0:
            x0, y0 = self.statements[0].start
            excellon = 'G00{0}\nM15\n'.format(
                CoordinateStmtEx(x=x0, y=y0).to_excellon(settings))

            for statement in self.statements:
                x0, y0 = statement.start
                x1, y1 = statement.end
                if isinstance(statement, DxfArcStatement):
                    i = statement.center[0] - x0
                    j = statement.center[1] - y0
                    excellon += '{0}{1}\n'.format(
                        'G03' if statement.end_angle > statement.start_angle else 'G02',
                        CoordinateStmtEx(x=x1, y=y1, i=i, j=j).to_excellon(settings))
                else:
                    excellon += 'G01{0}\n'.format(
                        CoordinateStmtEx(x=x1, y=y1).to_excellon(settings))
            
            excellon += 'M16\nG05\n'
        else:
            def ploter(x, y):
                return CoordinateStmtEx(x=x, y=y).to_excellon(settings) + '\n'
            excellon = self._plot_dots(pitch, width, ploter)

        return excellon

    def _plot_dots(self, pitch, width, ploter):
        out = ''
        offset = 0
        for idx in range(0, len(self.statements)):
            statement = self.statements[idx]
            if offset < 0:
                offset += pitch
            for dot, offset in statement.dots(pitch, width, offset):
                if dot is None:
                    break
                if offset > 0 and (statement.is_closed or idx != len(self.statements) - 1):
                    break
                #if idx == len(self.statements) - 1 and statement.is_closed and offset > -pitch:
                #    break
                out += ploter(dot[0], dot[1])
        return out

    def intersections_with_halfline(self, point_from, point_to, error_range=0):
        def calculator(statement):
            return statement.intersections_with_halfline(point_from, point_to, error_range)
        def validator(pt, statement, idx):
            if is_equal_point(pt, statement.end, error_range) and \
                not self._judge_cross(point_from, point_to, idx, error_range):
                    return False
            return True
        return self._collect_intersections(calculator, validator, error_range)

    def intersections_with_arc(self, center, radius, angle_regions, error_range=0):
        def calculator(statement):
            return statement.intersections_with_arc(center, radius, angle_regions, error_range)
        return self._collect_intersections(calculator, None, error_range)

    def _collect_intersections(self, calculator, validator, error_range):
        allpts = []
        last = allpts
        for i in range(0, len(self.statements)):
            statement = self.statements[i]
            cur = calculator(statement)
            if cur:
                for pt in cur:
                    for dest in allpts:
                        if is_equal_point(pt, dest, error_range):
                            break
                    else:
                        if validator is not None and not validator(pt, statement, i):
                            continue
                        allpts.append(pt)
            last = cur
        return allpts
    
    def _judge_cross(self, from_pt, to_pt, index, error_range):
        standard = normalize_vec2d((to_pt[0] - from_pt[0], to_pt[1] - from_pt[1]))
        normal = (standard[1], -standard[0])
        def statements():
            for i in range(index, len(self.statements)):
                yield self.statements[i]
            for i in range(0, index):
                yield self.statements[i]
        dot_standard = None
        for statement in statements():
            tstart = statement.start
            tend = statement.end
            target = normalize_vec2d((tend[0] - tstart[0], tend[1] - tstart[1]))
            dot= dot_vec2d(normal, target)
            if dot_standard is None:
                dot_standard = dot
                continue
            if is_equal_point(standard, target, error_range):
                continue
            return (dot_standard > 0 and dot > 0) or (dot_standard < 0 and dot < 0)
        raise Exception('inconsistensy is detected while cross judgement between paths')
            
def generate_paths(statements, error_range=0):
    from gerberex.dxf import DxfPolylineStatement

    paths = []
    for statement in filter(lambda s: isinstance(s, DxfPolylineStatement), statements):
        units = [unit for unit in statement.disassemble()]
        paths.append(DxfPath(units, error_range))

    unique_statements = []
    redundant = 0
    for statement in filter(lambda s: not isinstance(s, DxfPolylineStatement), statements):
        for path in paths:
            if path.contain(statement):
                redundant += 1
                break
        else:
            for target in unique_statements:
                if statement.is_equal_to(target, error_range):
                    redundant += 1
                    break
            else:
                unique_statements.append(statement)

    paths.extend([DxfPath([s], error_range) for s in unique_statements])

    prev_paths_num = 0
    while prev_paths_num != len(paths):
        working = []
        for i in range(len(paths)):
            mergee = paths[i]
            for j in range(i + 1, len(paths)):
                target = paths[j]
                if target.merge(mergee, error_range):
                    break
            else:
                working.append(mergee)
        prev_paths_num = len(paths)
        paths = working
    
    closed_path = list(filter(lambda p: p.is_closed, paths))
    open_path = list(filter(lambda p: not p.is_closed, paths))
    return (closed_path, open_path)

def judge_containment(path1, path2, error_range=0):
    from gerberex.dxf import DxfArcStatement, DxfLineStatement

    nocontainment = (None, None)
    if not path1.may_be_in_collision(path2):
        return nocontainment
    
    def is_in_line_segment(point_from, point_to, point):
        dx = point_to[0] - point_from[0]
        ratio = (point[0] - point_from[0]) / dx if dx != 0 else \
                (point[1] - point_from[1]) / (point_to[1] - point_from[1])
        return ratio >= 0 and ratio <= 1

    def contain_in_path(statement, path):
        if isinstance(statement, DxfLineStatement):
            segment = (statement.start, statement.end)
        elif isinstance(statement, DxfArcStatement):
            if statement.start == statement.end:
                segment = (statement.start, statement.center)
            else:
                segment = (statement.start, statement.end)
        else:
            raise Exception('invalid dxf statement type')
        pts = path.intersections_with_halfline(segment[0], segment[1], error_range)
        if len(pts) % 2 == 0:
            return False
        for pt in pts:
            if is_in_line_segment(segment[0], segment[1], pt):
                return False
        if isinstance(statement, DxfArcStatement):
            pts = path.intersections_with_arc(
                statement.center, statement.radius, statement.angle_regions, error_range)
            if len(pts) > 0:
                return False
        return True
    
    if contain_in_path(path1.statements[0], path2):
        containment = [path1, path2]
    elif contain_in_path(path2.statements[0], path1):
        containment = [path2, path1]
    else:
        return nocontainment
    for i in range(1, len(containment[0].statements)):
        if not contain_in_path(containment[0].statements[i], containment[1]):
            return nocontainment
    return containment