1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
from gerber.utils import inch, metric, write_gerber_value
from gerber.cam import FileSettings
from gerberex.utility import is_equal_point, is_equal_value
class DxfPath(object):
def __init__(self, statement, error_range=0):
self.statements = [statement]
self.error_range = error_range
@property
def start(self):
return self.statements[0].start
@property
def end(self):
return self.statements[-1].end
@property
def is_closed(self):
return len(self.statements) > 1 and \
is_equal_point(self.start, self.end, self.error_range)
def is_equal_to(self, target, error_range=0):
if not isinstance(target, DxfPath):
return False
if len(self.statements) != len(target.statements):
return False
if is_equal_point(self.start, target.start, error_range) and \
is_equal_point(self.end, target.end, error_range):
for i in range(0, len(self.statements)):
if not self.statements[i].is_equal_to(target.statements[i], error_range):
return False
return True
elif is_equal_point(self.start, target.end, error_range) and \
is_equal_point(self.end, target.start, error_range):
for i in range(0, len(self.statements)):
if not self.statements[i].is_equal_to(target.statements[-1 - i], error_range):
return False
return True
return False
def to_inch(self):
self.error_range = inch(self.error_range)
def to_metric(self):
self.error_range = metric(self.error_range)
def reverse(self):
rlist = []
for statement in reversed(self.statements):
statement.reverse()
rlist.append(statement)
self.statements = rlist
def merge(self, element, error_range=0):
if self.is_closed or element.is_closed:
return False
if not error_range:
error_range = self.error_range
if is_equal_point(self.end, element.start, error_range):
return self._append_at_end(element, error_range)
elif is_equal_point(self.end, element.end, error_range):
element.reverse()
return self._append_at_end(element, error_range)
elif is_equal_point(self.start, element.end, error_range):
return self._insert_on_top(element, error_range)
elif is_equal_point(self.start, element.start, error_range):
element.reverse()
return self._insert_on_top(element, error_range)
else:
return False
def _append_at_end(self, element, error_range=0):
if isinstance(element, DxfPath):
if self.is_equal_to(element, error_range):
return False
for i in range(0, min(len(self.statements), len(element.statements))):
if not self.statements[-1 - i].is_equal_to(element.statements[i]):
break
for j in range(0, min(len(self.statements), len(element.statements))):
if not self.statements[j].is_equal_to(element.statements[-1 - j]):
break
if i + j >= len(element.statements):
return False
mergee = list(element.statements)
if i > 0:
del mergee[0:i]
del self.statements[-i]
if j > 0:
del mergee[-j]
del self.statements[0:j]
self.statements.extend(mergee)
return True
else:
if self.statements[-1].is_equal_to(element, error_range) or \
self.statements[0].is_equal_to(element, error_range):
return False
self.statements.appen(element)
return True
def _insert_on_top(self, element, error_range=0):
if isinstance(element, DxfPath):
if self.is_equal_to(element, error_range):
return False
for i in range(0, min(len(self.statements), len(element.statements))):
if not self.statements[-1 - i].is_equal_to(element.statements[i]):
break
for j in range(0, min(len(self.statements), len(element.statements))):
if not self.statements[j].is_equal_to(element.statements[-1 - j]):
break
if i + j >= len(element.statements):
return False
mergee = list(element.statements)
if i > 0:
del mergee[0:i]
del self.statements[-i]
if j > 0:
del mergee[-j]
del self.statements[0:j]
self.statements[0:0] = mergee
return True
else:
if self.statements[-1].is_equal_to(element, error_range) or \
self.statements[0].is_equal_to(element, error_range):
return False
self.statements.insert(0, element)
return True
def to_gerber(self, settings=FileSettings(), pitch=0, width=0):
from gerberex.dxf import DxfArcStatement
if pitch:
return
x0, y0 = self.statements[0].start
gerber = 'G01*\nX{0}Y{1}D02*\nG75*'.format(
write_gerber_value(x0, settings.format,
settings.zero_suppression),
write_gerber_value(y0, settings.format,
settings.zero_suppression),
)
for statement in self.statements:
x0, y0 = statement.start
x1, y1 = statement.end
if isinstance(statement, DxfArcStatement):
xc, yc = statement.center
gerber += '\nG{0}*\nX{1}Y{2}I{3}J{4}D01*'.format(
'03' if statement.end_angle > statement.start_angle else '02',
write_gerber_value(x1, settings.format,
settings.zero_suppression),
write_gerber_value(y1, settings.format,
settings.zero_suppression),
write_gerber_value(xc - x0, settings.format,
settings.zero_suppression),
write_gerber_value(yc - y0, settings.format,
settings.zero_suppression)
)
else:
gerber += '\nG01*\nX{0}Y{1}D01*'.format(
write_gerber_value(x1, settings.format,
settings.zero_suppression),
write_gerber_value(y1, settings.format,
settings.zero_suppression),
)
return gerber
def generate_closed_paths(statements, error_range=0):
from gerberex.dxf import DxfLineStatement, DxfArcStatement
unique_statements = []
redundant = 0
for statement in statements:
for target in unique_statements:
if not isinstance(statement, DxfLineStatement) and \
not isinstance(statement, DxfArcStatement):
break
if statement.is_equal_to(target, error_range):
redundant += 1
break
else:
unique_statements.append(statement)
paths = [DxfPath(s, error_range) for s in unique_statements]
prev_paths_num = 0
while prev_paths_num != len(paths):
working = []
for i in range(len(paths)):
mergee = paths[i]
for j in range(i + 1, len(paths)):
target = paths[j]
if target.merge(mergee, error_range):
break
else:
working.append(mergee)
prev_paths_num = len(paths)
paths = working
return list(filter(lambda p: p.is_closed, paths))
|