summaryrefslogtreecommitdiff
path: root/olsndot/firmware/main.c
blob: 1b3e054ad7ec2a6f9c7f61d47e340dc6f5b8fd65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <stm32f0xx.h>
#include <stdint.h>
#include <system_stm32f0xx.h>
#include <stm32f0xx_ll_utils.h>
#include <math.h>
/* 
 * Part number: STM32F030F4C6
 */

#define NBITS 12
void do_transpose(void);
uint32_t brightness[32];
volatile uint32_t brightness_by_bit[NBITS];

void hsv_set(int idx, int hue, int white) {
    int i = hue>>NBITS;
    int j = hue & (~(-1<<NBITS));
    int r=0, g=0, b=0;
    switch (i) {
        case 0:
        r = (1<<NBITS)-1;
        g = 0;
        b = j;
        break;
        case 1:
        r = (1<<NBITS)-1-j;
        g = 0;
        b = (1<<NBITS)-1;
        break;
        case 2:
        r = 0;
        g = j;
        b = (1<<NBITS)-1;
        break;
        case 3:
        r = 0;
        g = (1<<NBITS)-1;
        b = (1<<NBITS)-1-j;
        break;
        case 4:
        r = j;
        g = (1<<NBITS)-1;
        b = 0;
        break;
        case 5:
        r = (1<<NBITS)-1;
        g = (1<<NBITS)-1-j;
        b = 0;
        break;
    }
    brightness[idx*4 + 0] = white;
    brightness[idx*4 + 1] = r;
    brightness[idx*4 + 2] = g;
    brightness[idx*4 + 3] = b;
}

int hue;
int main(void) {
    RCC->CR |= RCC_CR_HSEON;
    while (!(RCC->CR&RCC_CR_HSERDY));
    RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
    RCC->CFGR |= (2<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x4 -> 50.0MHz */
    RCC->CFGR2 &= ~RCC_CFGR2_PREDIV_Msk;
    RCC->CFGR2 |= RCC_CFGR2_PREDIV_DIV2; /* prediv :2 -> 12.5MHz */
    RCC->CR |= RCC_CR_PLLON;
    while (!(RCC->CR&RCC_CR_PLLRDY));
    RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
    SystemCoreClockUpdate();



    RCC->AHBENR  |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN;
    RCC->APB2ENR |= RCC_APB2ENR_SPI1EN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_ADCEN;

    GPIOA->MODER |=
          (3<<GPIO_MODER_MODER0_Pos)  /* PA0  - Current measurement analog input */
        | (1<<GPIO_MODER_MODER1_Pos)  /* PA1  - RS485 TX enable */
        | (2<<GPIO_MODER_MODER2_Pos)  /* PA2  - RS485 TX */
        | (2<<GPIO_MODER_MODER3_Pos)  /* PA3  - RS485 RX */
        /* PA4 reserved because */
        | (2<<GPIO_MODER_MODER5_Pos)  /* PA5  - Shift register clk/SCLK */
        | (1<<GPIO_MODER_MODER6_Pos)  /* PA6  - LED2 open-drain output */
        | (2<<GPIO_MODER_MODER7_Pos)  /* PA7  - Shift register data/MOSI */
        | (2<<GPIO_MODER_MODER9_Pos)  /* FIXME PA9  - Shift register clear (TIM1_CH2) */
        | (2<<GPIO_MODER_MODER10_Pos);/* PA10 - Shift register strobe (TIM1_CH3) */
    GPIOB->MODER |=
          (2<<GPIO_MODER_MODER1_Pos); /* PB1  - Shift register clear (TIM1_CH3N) */


    GPIOA->OTYPER |= GPIO_OTYPER_OT_6; /* LED outputs -> open drain */

    /* Set shift register IO GPIO output speed */
    GPIOA->OSPEEDR |=
          (3<<GPIO_OSPEEDR_OSPEEDR5_Pos)  /* SCLK   */
        | (3<<GPIO_OSPEEDR_OSPEEDR6_Pos)  /* LED1   */
        | (3<<GPIO_OSPEEDR_OSPEEDR7_Pos)  /* MOSI   */
        | (3<<GPIO_OSPEEDR_OSPEEDR10_Pos);/* Strobe */
    GPIOB->OSPEEDR |=
          (3<<GPIO_OSPEEDR_OSPEEDR1_Pos); /* Clear  */

    GPIOA->AFR[0] |=
          (1<<GPIO_AFRL_AFRL2_Pos)   /* USART1_TX */
        | (1<<GPIO_AFRL_AFRL3_Pos)   /* USART1_RX */
        | (0<<GPIO_AFRL_AFRL5_Pos)   /* SPI1_SCK  */
        | (0<<GPIO_AFRL_AFRL7_Pos);  /* SPI1_MOSI */
    GPIOA->AFR[1] |=
          (2<<GPIO_AFRH_AFRH2_Pos);  /* TIM1_CH3  */
    GPIOB->AFR[0] |=
          (2<<GPIO_AFRL_AFRL1_Pos);  /* TIM1_CH3N */
    
    /* Configure SPI controller */
    /* CPOL=0, CPHA=0, prescaler=8 -> 1MBd */
    SPI1->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_SPE | (0<<SPI_CR1_BR_Pos) | SPI_CR1_MSTR;
    SPI1->CR2 = (0xf<<SPI_CR2_DS_Pos);
    /* Configure TIM1 for display strobe generation */
    /* Configure UART for RS485 comm */
    /* 8N1, 115200Bd */
    TIM1->CR1 = TIM_CR1_ARPE; // | TIM_CR1_OPM; // | TIM_CR1_URS;

    TIM1->PSC = 1; // debug
    /* CH2 - clear/!MR, CH3 - strobe/STCP */
    TIM1->CCMR2 = (6<<TIM_CCMR2_OC3M_Pos); // | TIM_CCMR2_OC3PE;
    TIM1->CCER |= TIM_CCER_CC3E | TIM_CCER_CC3NE | TIM_CCER_CC3P | TIM_CCER_CC3NP;
    TIM1->BDTR = TIM_BDTR_MOE | (8<<TIM_BDTR_DTG_Pos); /* 1us dead time */
    TIM1->DIER = TIM_DIER_UIE;
    TIM1->ARR = 1;
    TIM1->CR1 |= TIM_CR1_CEN;

    NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
    NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 2);

    TIM1->EGR |= TIM_EGR_UG;

    while (42) {
#define HUE_MAX ((1<<NBITS)*6)
#define HUE_OFFX 0.15F /* 0-1 */
#define HUE_AMPLITUDE 0.05F /* 0-1 */
#define CHANNEL_SPACING 1.5F /* in radians */
#define WHITE 0.2F /* 0-1 */
        for (float v=0; v<8*M_PI; v += 0.01F) {
            GPIOA->ODR ^= GPIO_ODR_6;
            /* generate hsv fade */
            for (int ch=0; ch<8; ch++) {
                hue = HUE_MAX * (HUE_OFFX + HUE_AMPLITUDE*sinf(v + ch*CHANNEL_SPACING));
                hue %= HUE_MAX;
                hsv_set(ch, hue, WHITE*(1<<NBITS));
            }
            do_transpose();
            for (int k=0; k<10000; k++) {
                asm volatile("nop");
            }
        }
    }
}

uint32_t brightness[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
volatile uint32_t brightness_by_bit[NBITS] = { 0 };

void do_transpose(void) {
    for (uint32_t i=0; i<NBITS; i++) {
        uint32_t bv = 0;
        uint32_t mask = 1<<i;
        for (uint32_t j=0; j<32; j++) {
            if (brightness[j] & mask)
            bv |= 1<<j;
        }
        brightness_by_bit[i] = bv;
    }
}

void TIM1_BRK_UP_TRG_COM_IRQHandler(void) {
    /* The index of the currently active bit. On entry of this function, this is the bit index of the upcoming period.
     * On exit it is the index of the *next* period. */
    static uint32_t idx = 0;

    /* Access bits offset by one as we are setting the *next* period based on idx below. */
    uint32_t val = brightness_by_bit[idx];

    idx++;
    if (idx >= NBITS)
        idx = 0;

    GPIOA->ODR ^= GPIO_ODR_6; /* LED1 */

    /* Shift out the current period's data. The shift register clear and strobe lines are handled by the timers
     * capture/compare channel 3 complementary outputs. The dead-time generator is used to sequence the clear and strobe
     * edges one after another. Since there may be small variations in IRQ service latency it is critical to allow for
     * some leeway between the end of this data transmission and strobe and clear. */
    SPI1->DR = (val&0xffff);
    while (SPI1->SR & SPI_SR_BSY);
    SPI1->DR = (val>>16);
    while (SPI1->SR & SPI_SR_BSY);

    /* Set up everything for the *next* period. The timer is set to count from 0 to ARR. ARR and CCR3 are pre-loaded, so
     * the values written above will only be latched on timer overrun at the end of this period. This is a little
     * complicated, but doing it this way has the advantage of keeping both duty cycle and frame rate precisely
     * constant. */
    const int period_base = 4; /* 1us */
    const int period = (period_base<<idx) + 4 /* 1us dead time */;
    const int timer_cycles_for_spi_transmissions = 128;
    TIM1->ARR = period + timer_cycles_for_spi_transmissions;
    TIM1->CCR3 = timer_cycles_for_spi_transmissions;
    TIM1->SR &= ~TIM_SR_UIF_Msk;
}

void NMI_Handler(void) {
}

void HardFault_Handler(void) {
    for(;;);
}

void SVC_Handler(void) {
}


void PendSV_Handler(void) {
}

void SysTick_Handler(void) {
}

/* FIXME */
void _exit(void) {}
void *__bss_start__;
void *__bss_end__;

int __errno;