1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/* OpenStep 2
* Copyright (C) 2017 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/* Preliminary remarks.
*
* This code is intended to run on an ARM Cortex-M0 microcontroller made by ST, part number STM32F030F4C6
*
* Some terminology:
*
* * The term "raw channel" refers to a single output of the 32 outputs provided by the driver board. It corresponds to
* a single color sub-channel of one RGBW output. One RGBW output consists of four raw channels.
*
* * The term "logical channel" refers to one RGBW output of four individual colors handled by a group of four raw
* channels.
*/
#include <stm32f0xx.h>
#include <stdint.h>
#include <system_stm32f0xx.h>
#include <stm32f0xx_ll_utils.h>
#include <math.h>
#include "global.h"
#include "serial.h"
#include "adc.h"
void do_transpose(void);
/* Bit-golfed modulation data generated from the above values by the main loop, ready to be sent out to the shift
* registers.
*/
volatile uint32_t brightness_by_bit[NBITS] = { 0 };
/* Global systick timing variables */
uint32_t sys_time = 0;
uint32_t sys_time_seconds = 0;
/* This value sets how long a batch of ADC conversions used for temperature measurement is started before the end of the
* longest cycle. Here too the above caveats apply.
*
* This value is in TIM1 timer counts. */
#define ADC_PRETRIGGER 300 /* trigger with about 12us margin to TIM1 CC IRQ */
/* This value is a constant offset added to every bit period to allow for the timer IRQ handler to execute. This is set
* empirically using a debugger and a logic analyzer. */
#define TIMER_CYCLES_FOR_SPI_TRANSMISSIONS 240
/* This is the same as above, but for the reset cycle of the bit period. */
#define RESET_PERIOD_LENGTH 80
/* Defines for brevity */
#define A TIMER_CYCLES_FOR_SPI_TRANSMISSIONS
#define B 40
/* This lookup table maps bit positions to timer period values. This is a lookup table to allow for the compensation for
* non-linear effects of ringing at lower bit durations.
*/
static uint16_t timer_period_lookup[NBITS] = {
/* LSB here */
A + 1,
A + 3,
A + 9,
A + 29,
A + 71,
A + (B<< 2),
A + (B<< 3),
A + (B<< 4),
A + (B<< 5),
A + (B<< 6),
A + (B<< 7),
A + (B<< 8),
A + (B<< 9),
A + (B<<10),
/* MSB here */
};
/* Don't pollute the global namespace */
#undef A
#undef B
#undef C
int main(void) {
/* Get all the good clocks and PLLs on this thing up and running. We're running from an external 25MHz crystal,
* which we're first dividing down by 5 to get 5 MHz, then PLL'ing up by 6 to get 30 MHz as our main system clock.
*
* The busses are all run directly from these 30 MHz because why not.
*
* Be careful in mucking around with this code since you can kind of semi-brick the chip if you do it wrong.
*/
RCC->CR |= RCC_CR_HSEON;
while (!(RCC->CR&RCC_CR_HSERDY));
// HSE ready, let's configure the PLL
RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
// PLLMUL: 6x (0b0100)
RCC->CFGR |= (0b0100<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV;
// PREDIV:
// HSE / PREDIV = PLL SRC
RCC->CFGR2 &= ~RCC_CFGR2_PREDIV_Msk;
RCC->CFGR2 |= RCC_CFGR2_PREDIV_DIV5; /* prediv :10 -> 5 MHz */
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR&RCC_CR_PLLRDY));
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock/1000); /* 1ms interval */
/* Enable all the periphery we need */
RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_DMAEN;
RCC->APB2ENR |= RCC_APB2ENR_SPI1EN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_ADCEN;
/* Configure all the GPIOs */
GPIOA->MODER |=
(3<<GPIO_MODER_MODER0_Pos) /* PA0 - Current measurement analog input */
| (2<<GPIO_MODER_MODER1_Pos) /* PA1 - RS485 TX enable */
| (2<<GPIO_MODER_MODER2_Pos) /* PA2 - RS485 TX */
| (2<<GPIO_MODER_MODER3_Pos) /* PA3 - RS485 RX */
/* PA4 reserved because */
| (2<<GPIO_MODER_MODER5_Pos) /* PA5 - Shift register clk/SCLK */
| (1<<GPIO_MODER_MODER6_Pos) /* PA6 - LED2 open-drain output */
| (2<<GPIO_MODER_MODER7_Pos) /* PA7 - Shift register data/MOSI */
| (2<<GPIO_MODER_MODER9_Pos) /* PA9 - Shift register clear (TIM1_CH2) */
| (2<<GPIO_MODER_MODER10_Pos);/* PA10 - Shift register strobe (TIM1_CH3) */
GPIOA->OTYPER |= GPIO_OTYPER_OT_6; /* LED outputs -> open drain */
/* Set shift register IO GPIO output speed */
GPIOA->OSPEEDR |=
(3<<GPIO_OSPEEDR_OSPEEDR5_Pos) /* SCLK */
| (3<<GPIO_OSPEEDR_OSPEEDR6_Pos) /* LED1 */
| (3<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* MOSI */
| (3<<GPIO_OSPEEDR_OSPEEDR9_Pos) /* Clear */
| (3<<GPIO_OSPEEDR_OSPEEDR10_Pos);/* Strobe */
/* Alternate function settings */
GPIOA->AFR[0] |=
(1<<GPIO_AFRL_AFRL1_Pos) /* USART1_RTS (RS485 DE) */
| (1<<GPIO_AFRL_AFRL2_Pos) /* USART1_TX */
| (1<<GPIO_AFRL_AFRL3_Pos) /* USART1_RX */
| (0<<GPIO_AFRL_AFRL5_Pos) /* SPI1_SCK */
| (0<<GPIO_AFRL_AFRL7_Pos); /* SPI1_MOSI */
GPIOA->AFR[1] |=
(2<<GPIO_AFRH_AFRH1_Pos) /* TIM1_CH2 */
| (2<<GPIO_AFRH_AFRH2_Pos); /* TIM1_CH3 */
/* Configure SPI controller */
/* CPOL=0, CPHA=0, prescaler=2 -> 16MBd */
SPI1->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_SPE | (0<<SPI_CR1_BR_Pos) | SPI_CR1_MSTR;
SPI1->CR2 = (0xf<<SPI_CR2_DS_Pos);
/* Configure TIM1 for display strobe generation */
TIM1->CR1 = TIM_CR1_ARPE;
TIM1->PSC = 0; /* Do not prescale, resulting in a 30MHz timer frequency and 33.3ns timer step size. */
/* CH2 - clear/!MR, CH3 - strobe/STCP */
TIM1->CCMR1 = (6<<TIM_CCMR1_OC2M_Pos) | TIM_CCMR1_OC2PE;
TIM1->CCMR2 = (6<<TIM_CCMR2_OC3M_Pos) | TIM_CCMR2_OC3PE | (6<<TIM_CCMR2_OC4M_Pos);
TIM1->CCER |= TIM_CCER_CC3E | TIM_CCER_CC2E | TIM_CCER_CC3P | TIM_CCER_CC4E;
TIM1->BDTR = TIM_BDTR_MOE;
TIM1->DIER = TIM_DIER_UIE; /* Enable update (overrun) interrupt */
TIM1->ARR = 1;
TIM1->CR1 |= TIM_CR1_CEN;
/* TIM1 CC channel 4 is used to trigger an ADC run at the end of the longest bit cycle. This is done by setting a
* value that is large enough to not trigger in shorter bit cycles. */
TIM1->CCR4 = timer_period_lookup[NBITS-1] - ADC_PRETRIGGER;
/* Configure Timer 1 update (overrun) interrupt on NVIC. Used only for update (overrun) for strobe timing. */
NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 1);
/* Pre-load initial values, kick of first interrupt */
TIM1->EGR |= TIM_EGR_UG;
/* Configure UART for RS485 comm */
/* 8N1, 1MBd */
USART1->CR1 = /* 8-bit -> M1, M0 clear */
/* RTOIE clear */
(8 << USART_CR1_DEAT_Pos) /* 8 sample cycles/1 bit DE assertion time */
| (8 << USART_CR1_DEDT_Pos) /* 8 sample cycles/1 bit DE assertion time */
/* CMIF clear */
/* WAKE clear */
/* PCE, PS clear */
| USART_CR1_RXNEIE
/* other interrupts clear */
| USART_CR1_TE
| USART_CR1_RE;
USART1->CR3 = USART_CR3_DEM; /* RS485 DE enable (output on RTS) */
// USART1->BRR = 30;
//USART1->BRR = 40; // 750000
USART1->BRR = 60; // 500000
USART1->CR1 |= USART_CR1_UE;
/* Configure USART1 interrupt on NVIC. Used only for RX. */
NVIC_EnableIRQ(USART1_IRQn);
NVIC_SetPriority(USART1_IRQn, 2);
adc_init();
/* Idly loop around, occassionally disfiguring some integers. */
while (42) {
/* Debug output on LED. */
GPIOA->ODR ^= GPIO_ODR_6;
if (framebuf_out_of_sync != 0) {
/* This logic is very slightly racy, but that should not matter since we're updating the frame buffer often
* enough so you don't notice one miss every billion frames. */
framebuf_out_of_sync = 0;
/* Bit-mangle the integer framebuf data to produce raw modulation data */
do_transpose();
}
}
}
/* Modulation data bit golfing routine */
void do_transpose(void) {
/* For each bit value */
for (uint32_t i=0; i<NBITS; i++) {
uint32_t mask = 1<<i<<(MAX_BITS-NBITS); /* Bit mask for this bit value. */
uint32_t bv = 0; /* accumulator thing */
for (uint32_t j=0; j<NCHANNELS; j++)
if (rx_buf.set_fb_rq.framebuf[j] & mask)
bv |= 1<<j;
brightness_by_bit[i] = bv;
}
}
/* Timer 1 main IRQ handler. This is used only for overflow ("update" or UP event in ST's terminology). */
void TIM1_BRK_UP_TRG_COM_IRQHandler(void) {
/* The index of the currently active bit. On entry of this function, this is the bit index of the upcoming period.
* On exit it is the index of the *next* period. */
static int idx = 0;
/* We modulate all outputs simultaneously in n periods, with n being the modulation depth (the number of bits).
* Each period is split into two timer cycles. First, a long one during which the data for the current period is
* shifted out and subsequently latched to the outputs. Then, a short one that is used to reset all outputs in time
* for the next period.
*
* bit value: | <-- least significant, shortest period / most significant, longest period --> |
* bit number: | b0 | b1 | ... | b10 | b11 |
* name: | data cycle | reset cycle | | | | |
* function: | shift data <strobe> wait | | ... | ... | ... | ... |
* duration: | fixed variable | fixed | | | | |
*
* Now, alternate between the two cycles in one phase.
*/
static int clear = 0;
if ((clear = !clear)) {
/* Access bits offset by one as we are setting the *next* period based on idx below. */
uint32_t val = brightness_by_bit[idx];
/* Shift out the current period's data. The shift register clear and strobe lines are handled by the timers
* capture/compare channel 3 complementary outputs. The dead-time generator is used to sequence the clear and
* strobe edges one after another. Since there may be small variations in IRQ service latency it is critical to
* allow for some leeway between the end of this data transmission and strobe and clear. */
#if NCHANNELS > 16
SPI1->DR = (val>>16);
while (SPI1->SR & SPI_SR_BSY);
#endif
SPI1->DR = (val&0xffff);
while (SPI1->SR & SPI_SR_BSY);
/* Increment the bit index for the next cycle */
idx++;
if (idx >= NBITS)
idx = 0;
/* Set up the following reset pulse cycle. This cycle is short as it only needs to be long enough for the below
* part of this ISR handler routine to run. */
TIM1->ARR = RESET_PERIOD_LENGTH;
TIM1->CCR3 = 2; /* This value is fixed to produce a very short reset pulse. IOs, PCB and shift registers all can
easily handle this. */
TIM1->CCR2 = 3;
} else {
/* Set up everything for the data cycle of the *next* period. The timer is set to count from 0 to ARR. ARR and
* CCR3 are pre-loaded, so the values written above will only be latched on timer overrun at the end of this
* period. This is a little complicated, but doing it this way has the advantage of keeping both duty cycle and
* frame rate precisely constant. */
TIM1->CCR3 = TIMER_CYCLES_FOR_SPI_TRANSMISSIONS;
TIM1->CCR2 = TIMER_CYCLES_FOR_SPI_TRANSMISSIONS+1;
TIM1->ARR = timer_period_lookup[idx];
}
/* Reset the update interrupt flag. This ISR handler routine is only used for timer update events. */
TIM1->SR &= ~TIM_SR_UIF_Msk;
}
/* Misc IRQ handlers */
void NMI_Handler(void) {
}
void HardFault_Handler(void) {
for(;;);
}
void SVC_Handler(void) {
}
void PendSV_Handler(void) {
}
void SysTick_Handler(void) {
static int n = 0;
sys_time++;
if (n++ == 1000) {
n = 0;
sys_time_seconds++;
}
}
/* Misc stuff for nostdlib linking */
void _exit(int status) { while (23); }
void *__bss_start__;
void *__bss_end__;
int __errno;
|