summaryrefslogtreecommitdiff
path: root/firmware/main.c
diff options
context:
space:
mode:
Diffstat (limited to 'firmware/main.c')
-rw-r--r--firmware/main.c458
1 files changed, 458 insertions, 0 deletions
diff --git a/firmware/main.c b/firmware/main.c
new file mode 100644
index 0000000..a7cbbef
--- /dev/null
+++ b/firmware/main.c
@@ -0,0 +1,458 @@
+/* OpenStep 2
+ * Copyright (C) 2017 Sebastian Götte <code@jaseg.net>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Affero General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Affero General Public License for more details.
+ *
+ * You should have received a copy of the GNU Affero General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ */
+
+/* Preliminary remarks.
+ *
+ * This code is intended to run on an ARM Cortex-M0 microcontroller made by ST, part number STM32F030F4C6
+ *
+ * Some terminology:
+ *
+ * * The term "raw channel" refers to a single output of the 32 outputs provided by the driver board. It corresponds to
+ * a single color sub-channel of one RGBW output. One RGBW output consists of four raw channels.
+ *
+ * * The term "logical channel" refers to one RGBW output of four individual colors handled by a group of four raw
+ * channels.
+ */
+
+#include <stm32f0xx.h>
+#include <stdint.h>
+#include <system_stm32f0xx.h>
+#include <stm32f0xx_ll_utils.h>
+#include <math.h>
+
+/* Bit count of this device. Note that to change this you will also have to adapt the per-bit timer period lookup table
+ * below.
+ */
+#define NBITS 14
+
+/* Maximum bit count supported by serial command protocol. The brightness data is assumed to be of this bit width, but
+ * only the uppermost NBITS bits are used. */
+#define MAX_BITS 16
+
+void do_transpose(void);
+
+/* Right-aligned integer raw channel brightness values like so:
+ *
+ * bit index 31 ... 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ * | (MSB) serial data put *here* (LSB) |
+ * |<-utterly ignored->| |<-----------------MAX_BITS------------------>|
+ * |<----------------NBITS---------------->| |<>|--ignored
+ * | (MSB) brightness data (LSB) | |<>|--ignored
+ */
+uint32_t brightness[32] = { 0 };
+
+/* Bit-golfed modulation data generated from the above values by the main loop, ready to be sent out to the shift
+ * registers.
+ */
+volatile uint32_t brightness_by_bit[NBITS] = { 0 };
+
+/* Global systick timing variables */
+uint32_t sys_time = 0;
+uint32_t sys_time_seconds = 0;
+
+int main(void) {
+ /* Get all the good clocks and PLLs on this thing up and running. We're running from an external 16MHz crystal,
+ * which we're first dividing down by 2 to get 8MHz, then PLL'ing up by 4 to get 32MHz as our main system clock.
+ *
+ * The busses are all run directly from these 32MHz because why not.
+ *
+ * Be careful in mucking around with this code since you can kind of semi-brick the chip if you do it wrong.
+ */
+ RCC->CR |= RCC_CR_HSEON;
+ while (!(RCC->CR&RCC_CR_HSERDY));
+ RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
+ RCC->CFGR |= (2<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x4 -> 32.0MHz */
+ RCC->CFGR2 &= ~RCC_CFGR2_PREDIV_Msk;
+ RCC->CFGR2 |= RCC_CFGR2_PREDIV_DIV2; /* prediv :2 -> 8.0MHz */
+ RCC->CR |= RCC_CR_PLLON;
+ while (!(RCC->CR&RCC_CR_PLLRDY));
+ RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
+ SystemCoreClockUpdate();
+ SysTick_Config(SystemCoreClock/1000); /* 1ms interval */
+
+
+ /* Enable all the periphery we need */
+ RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN;
+ RCC->APB2ENR |= RCC_APB2ENR_SPI1EN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_ADCEN;
+ RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
+
+ /* Configure all the GPIOs */
+ GPIOA->MODER |=
+ (3<<GPIO_MODER_MODER0_Pos) /* PA0 - Current measurement analog input */
+ | (1<<GPIO_MODER_MODER1_Pos) /* PA1 - RS485 TX enable */
+ | (2<<GPIO_MODER_MODER2_Pos) /* PA2 - RS485 TX */
+ | (2<<GPIO_MODER_MODER3_Pos) /* PA3 - RS485 RX */
+ /* PA4 reserved because */
+ | (2<<GPIO_MODER_MODER5_Pos) /* PA5 - Shift register clk/SCLK */
+ | (1<<GPIO_MODER_MODER6_Pos) /* PA6 - LED2 open-drain output */
+ | (2<<GPIO_MODER_MODER7_Pos) /* PA7 - Shift register data/MOSI */
+ | (2<<GPIO_MODER_MODER9_Pos) /* FIXME PA9 - Shift register clear (TIM1_CH2) */
+ | (2<<GPIO_MODER_MODER10_Pos);/* PA10 - Shift register strobe (TIM1_CH3) */
+ GPIOB->MODER |=
+ (2<<GPIO_MODER_MODER1_Pos); /* PB1 - Shift register clear (TIM1_CH3N) */
+
+
+ GPIOA->OTYPER |= GPIO_OTYPER_OT_6; /* LED outputs -> open drain */
+
+ /* Set shift register IO GPIO output speed */
+ GPIOA->OSPEEDR |=
+ (3<<GPIO_OSPEEDR_OSPEEDR5_Pos) /* SCLK */
+ | (3<<GPIO_OSPEEDR_OSPEEDR6_Pos) /* LED1 */
+ | (3<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* MOSI */
+ | (3<<GPIO_OSPEEDR_OSPEEDR10_Pos);/* Strobe */
+ GPIOB->OSPEEDR |=
+ (3<<GPIO_OSPEEDR_OSPEEDR1_Pos); /* Clear */
+
+ /* Alternate function settings */
+ GPIOA->AFR[0] |=
+ (1<<GPIO_AFRL_AFRL2_Pos) /* USART1_TX */
+ | (1<<GPIO_AFRL_AFRL3_Pos) /* USART1_RX */
+ | (0<<GPIO_AFRL_AFRL5_Pos) /* SPI1_SCK */
+ | (0<<GPIO_AFRL_AFRL7_Pos); /* SPI1_MOSI */
+ GPIOA->AFR[1] |=
+ (2<<GPIO_AFRH_AFRH2_Pos); /* TIM1_CH3 */
+ GPIOB->AFR[0] |=
+ (2<<GPIO_AFRL_AFRL1_Pos); /* TIM1_CH3N */
+
+ /* Configure SPI controller */
+ /* CPOL=0, CPHA=0, prescaler=2 -> 16MBd */
+ SPI1->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_SPE | (0<<SPI_CR1_BR_Pos) | SPI_CR1_MSTR;
+ SPI1->CR2 = (0xf<<SPI_CR2_DS_Pos);
+
+ /* Configure TIM1 for display strobe generation */
+ TIM1->CR1 = TIM_CR1_ARPE;
+
+ TIM1->PSC = 1; /* Prescale by 2, resulting in a 16MHz timer frequency and 62.5ns timer step size. */
+ /* CH2 - clear/!MR, CH3 - strobe/STCP */
+ TIM1->CCMR2 = (6<<TIM_CCMR2_OC3M_Pos) | TIM_CCMR2_OC3PE;
+ TIM1->CCER |= TIM_CCER_CC3E | TIM_CCER_CC3NE | TIM_CCER_CC3P | TIM_CCER_CC3NP;
+ TIM1->BDTR = TIM_BDTR_MOE | (1<<TIM_BDTR_DTG_Pos); /* really short dead time */
+ TIM1->DIER = TIM_DIER_UIE; /* Enable update (overrun) interrupt */
+ TIM1->ARR = 1;
+ TIM1->CR1 |= TIM_CR1_CEN;
+
+ /* Configure Timer 1 update (overrun) interrupt on NVIC.
+ * Used only for update (overrun) for strobe timing. */
+ NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
+ NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 2);
+
+ /* Pre-load initial values, kick of first interrupt */
+ TIM1->EGR |= TIM_EGR_UG;
+
+ /* Configure TIM3 for USART timeout handing */
+ TIM3->CR1 = TIM_CR1_OPM;
+ TIM3->DIER = TIM_DIER_UIE;
+ TIM3->PSC = 31;
+ TIM3->ARR = 1000;
+
+ /* Configure Timer 3 update (overrun) interrupt on NVIC.
+ * Used only for update (overrun) for USART timeout handling. */
+ NVIC_EnableIRQ(TIM3_IRQn);
+ NVIC_SetPriority(TIM3_IRQn, 2);
+
+ /* Pre-load initial values */
+ TIM3->EGR |= TIM_EGR_UG;
+
+ /* Configure UART for RS485 comm */
+ /* 8N1, 1MBd */
+ USART1->CR1 = /* 8-bit -> M1, M0 clear */
+ /* RTOIE clear */
+ (8 << USART_CR1_DEAT_Pos) /* 8 sample cycles/1 bit DE assertion time */
+ | (8 << USART_CR1_DEDT_Pos) /* 8 sample cycles/1 bit DE assertion time */
+ /* CMIF clear */
+ /* WAKE clear */
+ /* PCE, PS clear */
+ | USART_CR1_RXNEIE
+ /* other interrupts clear */
+ | USART_CR1_TE
+ | USART_CR1_RE;
+ USART1->CR3 = USART_CR3_DEM; /* RS485 DE enable (output on RTS) */
+ USART1->BRR = 32;
+ USART1->CR1 |= USART_CR1_UE;
+
+ /* Configure USART1 interrupt on NVIC. Used only for RX. */
+ NVIC_EnableIRQ(USART1_IRQn);
+ NVIC_SetPriority(USART1_IRQn, 2);
+
+ /* Idly loop around, occassionally disfiguring some integers. */
+ while (42) {
+ /* Debug output on LED. */
+ GPIOA->ODR ^= GPIO_ODR_6;
+
+ /* Bit-mangle the integer brightness data to produce raw modulation data */
+ do_transpose();
+
+ /* Wait a moment */
+ for (int k=0; k<10000; k++)
+ asm volatile("nop");
+ }
+}
+
+/* Modulation data bit golfing routine */
+void do_transpose(void) {
+ /* For each bit value */
+ for (uint32_t i=0; i<NBITS; i++) {
+ uint32_t mask = 1<<i<<(MAX_BITS-NBITS); /* Bit mask for this bit value. */
+ uint32_t bv = 0; /* accumulator thing */
+ for (uint32_t j=0; j<32; j++) {
+ if (brightness[j] & mask)
+ bv |= 1<<j;
+ }
+ brightness_by_bit[i] = bv;
+ }
+}
+
+/* Bit timing base value. This is the lowes bit interval used */
+#define PERIOD_BASE 4
+
+/* This value is a constant offset added to every bit period to allow for the timer IRQ handler to execute. This is set
+ * empirically using a debugger and a logic analyzer. */
+#define TIMER_CYCLES_FOR_SPI_TRANSMISSIONS 120
+/* This is the same as above, but for the reset cycle of the bit period. */
+#define RESET_PERIOD_LENGTH 40
+
+/* Defines for brevity */
+#define A TIMER_CYCLES_FOR_SPI_TRANSMISSIONS
+#define B PERIOD_BASE
+
+/* This is a constant offset containing some empirically determined correction values */
+#define C (1 /* reset pulse comp */ - 3 /* analog snafu comp */)
+
+/* This lookup table maps bit positions to timer period values. This is a lookup table to allow for the compensation for
+ * non-linear effects of ringing at lower bit durations.
+ */
+static uint16_t timer_period_lookup[NBITS] = {
+ /* LSB here */
+ A - C + (B<< 0),
+ A - C + (B<< 1),
+ A - C + (B<< 2),
+ A - C + (B<< 3),
+ A - C + (B<< 4),
+ A - C + (B<< 5),
+ A - C + (B<< 6),
+ A - C + (B<< 7),
+ A - C + (B<< 8),
+ A - C + (B<< 9),
+ A - C + (B<<10),
+ A - C + (B<<11),
+ A - C + (B<<12),
+ A - C + (B<<13),
+ /* MSB here */
+};
+
+/* Don't pollute the global namespace */
+#undef A
+#undef B
+#undef C
+
+/* Timer 1 main IRQ handler. This is used only for overflow ("update" or UP event in ST's terminology). */
+void TIM1_BRK_UP_TRG_COM_IRQHandler(void) {
+ /* The index of the currently active bit. On entry of this function, this is the bit index of the upcoming period.
+ * On exit it is the index of the *next* period. */
+ static int idx = 0;
+ /* We modulate all outputs simultaneously in n periods, with n being the modulation depth (the number of bits).
+ * Each period is split into two timer cycles. First, a long one during which the data for the current period is
+ * shifted out and subsequently latched to the outputs. Then, a short one that is used to reset all outputs in time
+ * for the next period.
+ *
+ * bit value: | <-- least significant, shortest period / most significant, longest period --> |
+ * bit number: | b0 | b1 | ... | b10 | b11 |
+ * name: | data cycle | reset cycle | | | | |
+ * function: | shift data <strobe> wait | | ... | ... | ... | ... |
+ * duration: | fixed variable | fixed | | | | |
+ *
+ * Now, alternate between the two cycles in one phase.
+ */
+ static int clear = 0;
+ if ((clear = !clear)) {
+ /* Access bits offset by one as we are setting the *next* period based on idx below. */
+ uint32_t val = brightness_by_bit[idx];
+
+ /* Shift out the current period's data. The shift register clear and strobe lines are handled by the timers
+ * capture/compare channel 3 complementary outputs. The dead-time generator is used to sequence the clear and strobe
+ * edges one after another. Since there may be small variations in IRQ service latency it is critical to allow for
+ * some leeway between the end of this data transmission and strobe and clear. */
+ SPI1->DR = (val&0xffff);
+ while (SPI1->SR & SPI_SR_BSY);
+ SPI1->DR = (val>>16);
+ while (SPI1->SR & SPI_SR_BSY);
+
+ /* Increment the bit index for the next cycle */
+ idx++;
+ if (idx >= NBITS)
+ idx = 0;
+
+ /* Set up the following reset pulse cycle. This cycle is short as it only needs to be long enough for the below
+ * part of this ISR handler routine to run. */
+ TIM1->ARR = RESET_PERIOD_LENGTH;
+ TIM1->CCR3 = 1; /* This value is fixed to produce a very short reset pulse. IOs, PCB and shift registers all can
+ easily handle this. */
+ } else {
+ /* Set up everything for the data cycle of the *next* period. The timer is set to count from 0 to ARR. ARR and
+ * CCR3 are pre-loaded, so the values written above will only be latched on timer overrun at the end of this
+ * period. This is a little complicated, but doing it this way has the advantage of keeping both duty cycle and
+ * frame rate precisely constant. */
+ TIM1->CCR3 = TIMER_CYCLES_FOR_SPI_TRANSMISSIONS;
+ TIM1->ARR = timer_period_lookup[idx];
+ }
+ /* Reset the update interrupt flag. This ISR handler routine is only used for timer update events. */
+ TIM1->SR &= ~TIM_SR_UIF_Msk;
+}
+
+/* The data format of the serial command interface.
+ *
+ * The serial interface uses short packets. Currently, there is only one packet type defined: a "set RGBW" packet, using
+ * command ID 0x23. The packet starts with the command ID, followed by the addressed channel group, followed by four
+ * times two bytes of big-endian RGBW channel data.
+ *
+ *
+ */
+union packet {
+ struct {
+ uint8_t cmd; /* 0x23 */
+ uint8_t step; /* logical channel. The USART_CHANNEL_OFFX is applied on this number below. */
+ union {
+ uint16_t rgbw[4];
+ struct {
+ uint16_t r, g, b, w;
+ };
+ };
+ } set_step;
+ uint8_t data[0];
+};
+
+int rxpos = 0;
+void TIM3_IRQHandler(void) {
+ TIM3->SR &= ~TIM_SR_UIF;
+ /* if (rxpos != sizeof(union packet))
+ asm("bkpt");
+ */
+ rxpos = 0;
+}
+
+/* This macro defines the lowest channel number of this board on the serial command bus. On a shared bus with several
+ * boards, you would generally assign increasing USART_CHANNEL_OFFX values to each one (0, 8, 16, 24, ...).
+ *
+ * Example: Let USART_CHANNEL_OFFX be 8.
+ *
+ * /--Command channel number received in command packet (packet.set_step.step)
+ * | /--USART_OFFX
+ * | | /--4 raw channels per logical channel (step): R, G, B, W
+ * | | | /--Raw channel offset for R, G, B, W
+ * | | | | /--Resulting raw channels for R, G, B, W data received in command packet
+ * | | | | |
+ * v v v v v
+ *
+ * (8 - 8) * 4 + {0, 1, 2, 3} = {0, 1, 2, 3}
+ * (9 - 8) * 4 + {0, 1, 2, 3}
+ * (10 - 8) * 4 + {0, 1, 2, 3}
+ * (11 - 8) * 4 + {0, 1, 2, 3}
+ * (12 - 8) * 4 + {0, 1, 2, 3}
+ * (13 - 8) * 4 + {0, 1, 2, 3}
+ * (14 - 8) * 4 + {0, 1, 2, 3}
+ * (15 - 8) * 4 + {0, 1, 2, 3}
+ */
+#ifndef USART_CHANNEL_OFFX
+#define USART_CHANNEL_OFFX 8
+#endif//USART_CHANNEL_OFFX
+
+#define NCHANNELS (sizeof(brightness)/sizeof(brightness[0]))
+void USART1_IRQHandler() {
+ static union packet rxbuf;
+
+ int isr = USART1->ISR;
+ USART1->RQR |= USART_RQR_RXFRQ;
+ /* Overrun detected? */
+ if (isr & USART_ISR_ORE) {
+ USART1->ICR = USART_ICR_ORECF; /* Acknowledge overrun */
+ //asm("bkpt"); /* uncomment for debug */
+ return;
+ }
+
+ if (!(isr & USART_ISR_RXNE)) {
+ //asm("bkpt"); /* uncomment for debug */
+ return;
+ }
+
+ /* Store received data */
+ uint8_t data = USART1->RDR;
+ rxbuf.data[rxpos] = data;
+ rxpos++;
+
+ /* If we finished receiving a packet, deal with it. */
+ if (rxpos == sizeof(union packet)) {
+ /* Check packet header */
+ if (rxbuf.set_step.cmd == 0x23 &&
+ /* bounds-check received channel number. This allows several driver boards to share one common serial bus */
+ rxbuf.set_step.step >= USART_CHANNEL_OFFX &&
+ rxbuf.set_step.step < USART_CHANNEL_OFFX+NCHANNELS) {
+
+ /* Calculate raw channel brightness value base address for logical channel */
+ uint32_t *out = &brightness[(rxbuf.set_step.step - USART_CHANNEL_OFFX)*4];
+
+ /* Correct RGBW raw channel ordering per logical channel according to SUB-D pinout used.
+ *
+ * (matti) (treppe)
+ * weiß blau
+ * rot weiß
+ * grün rot
+ * blau grün
+ */
+ out[1] = rxbuf.set_step.rgbw[0];
+ out[2] = rxbuf.set_step.rgbw[1];
+ out[3] = rxbuf.set_step.rgbw[2];
+ out[0] = rxbuf.set_step.rgbw[3];
+ }
+ /* Reset receive data counter */
+ rxpos = 0;
+ }
+
+ /* Reset usart timeout handler */
+ TIM3->CNT = 0;
+ TIM3->CR1 |= TIM_CR1_CEN;
+}
+
+/* Misc IRQ handlers */
+void NMI_Handler(void) {
+}
+
+void HardFault_Handler(void) {
+ for(;;);
+}
+
+void SVC_Handler(void) {
+}
+
+
+void PendSV_Handler(void) {
+}
+
+void SysTick_Handler(void) {
+ static int n = 0;
+ sys_time++;
+ if (n++ == 1000) {
+ n = 0;
+ sys_time_seconds++;
+ }
+}
+
+/* Misc stuff for nostdlib linking */
+void _exit(int status) { while (23); }
+void *__bss_start__;
+void *__bss_end__;
+int __errno;
+