1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/*
*******************************************************************************
* [curebuffer.c]
* This module is for FIFO buffer.
*
* This program is under the terms of the GPLv3.
* https://www.gnu.org/licenses/gpl-3.0.html
*
* Copyright(c) 2017 Keshikan (www.keshikan.net)
*******************************************************************************
*/
#include "curebuffer.h"
#include <stdint.h>
#include <stdlib.h>
/////////////////////////////
//methods for uint8_t FIFO.
/////////////////////////////
BUFFER_STATUS cureRingBufferU8Init(RingBufferU8 *rbuf, uint16_t buflen)
{
uint32_t i;
cureRingBufferU8Free(rbuf);
rbuf->buffer = (uint8_t *)malloc( buflen * sizeof(uint8_t) );
if(NULL == rbuf->buffer){
return BUFFER_FAILURE;
}
for(i=0; i<buflen; i++){
rbuf->buffer[i] = 0;
}
rbuf->length = buflen;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBufferU8Free(RingBufferU8 *rbuf)
{
if(NULL != rbuf->buffer){
free(rbuf->buffer);
}
rbuf->idx_front = rbuf->idx_rear = 0;
rbuf->length = 0;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBufferU8Enqueue(RingBufferU8 *rbuf, uint8_t *inputc)
{
if( ((rbuf->idx_front +1)&(rbuf->length -1)) == rbuf->idx_rear ){//buffer overrun error occurs.
return BUFFER_FAILURE;
}else{
rbuf->buffer[rbuf->idx_front]= *inputc;
rbuf->idx_front++;
rbuf->idx_front &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
BUFFER_STATUS cureRingBufferU8Dequeue(RingBufferU8 *rbuf, uint8_t *ret)
{
if(rbuf->idx_front == rbuf->idx_rear){//if buffer underrun error occurs.
return BUFFER_FAILURE;
}else{
*ret = (rbuf->buffer[rbuf->idx_rear]);
rbuf->idx_rear++;
rbuf->idx_rear &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
//debug
uint16_t _cureRingBufferU8GetUsedSize(RingBufferU8 *rbuf)
{
if(rbuf->idx_front >= rbuf->idx_rear){
return rbuf->idx_front - rbuf->idx_rear;
}else{
return rbuf->idx_front + rbuf->length - rbuf->idx_rear;
}
}
/////////////////////////////
//methods for int16_t FIFO.
/////////////////////////////
BUFFER_STATUS cureRingBuffer16Init(RingBuffer16 *rbuf, uint16_t buflen)
{
uint32_t i;
cureRingBuffer16Free(rbuf);
rbuf->buffer = (int16_t *)malloc( buflen * sizeof(int16_t) );
if(NULL == rbuf->buffer){
return BUFFER_FAILURE;
}
for(i=0; i<buflen; i++){
rbuf->buffer[i] = 0;
}
rbuf->length = buflen;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBuffer16Free(RingBuffer16 *rbuf)
{
if(NULL != rbuf->buffer){
free(rbuf->buffer);
}
rbuf->idx_front = rbuf->idx_rear = 0;
rbuf->length = 0;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBuffer16Enqueue(RingBuffer16 *rbuf, int16_t *inputc)
{
if( ((rbuf->idx_front +1)&(rbuf->length -1)) == rbuf->idx_rear ){//buffer overrun error occurs.
return BUFFER_FAILURE;
}else{
rbuf->buffer[rbuf->idx_front]= *inputc;
rbuf->idx_front++;
rbuf->idx_front &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
BUFFER_STATUS cureRingBuffer16EnqueueIgnoreErr(RingBuffer16 *rbuf, int16_t *inputc)
{
rbuf->buffer[rbuf->idx_front]= *inputc;
rbuf->idx_front++;
rbuf->idx_front &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBuffer16Dequeue(RingBuffer16 *rbuf, int16_t *ret)
{
if(rbuf->idx_front == rbuf->idx_rear){//if buffer underrun error occurs.
return BUFFER_FAILURE;
}else{
*ret = (rbuf->buffer[rbuf->idx_rear]);
rbuf->idx_rear++;
rbuf->idx_rear &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
BUFFER_STATUS cureRingBuffer16GetElement(RingBuffer16 *rbuf, int16_t *ret, uint16_t delaynum, uint16_t delay_buffer_length)
{
if(rbuf->idx_front >= delaynum){
rbuf->idx_rear = rbuf->idx_front - delaynum;
}else{
rbuf->idx_rear = delay_buffer_length - (delaynum - rbuf->idx_front);
}
*ret = (rbuf->buffer[rbuf->idx_rear]);
return BUFFER_SUCCESS;
}
/////////////////////////////
//methods for uint32_t FIFO.
/////////////////////////////
BUFFER_STATUS cureRingBufferU32Init(RingBuffer32 *rbuf, uint16_t buflen)
{
uint32_t i;
cureRingBufferU32Free(rbuf);
rbuf->buffer = (uint32_t *)malloc( buflen * sizeof(uint32_t) );
if(NULL == rbuf->buffer){
return BUFFER_FAILURE;
}
for(i=0; i<buflen; i++){
rbuf->buffer[i] = 0;
}
rbuf->length = buflen;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBufferU32Free(RingBuffer32 *rbuf)
{
if(NULL != rbuf->buffer){
free(rbuf->buffer);
}
rbuf->idx_front = rbuf->idx_rear = 0;
rbuf->length = 0;
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBufferU32Enqueue(RingBuffer32 *rbuf, uint32_t *inputc)
{
if( ((rbuf->idx_front +1)&(rbuf->length -1)) == rbuf->idx_rear ){//buffer overrun error occurs.
return BUFFER_FAILURE;
}else{
rbuf->buffer[rbuf->idx_front]= *inputc;
rbuf->idx_front++;
rbuf->idx_front &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
BUFFER_STATUS cureRingBufferU32EnqueueIgnoreErr(RingBuffer32 *rbuf, uint32_t *inputc)
{
rbuf->buffer[rbuf->idx_front]= *inputc;
rbuf->idx_front++;
rbuf->idx_front &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
BUFFER_STATUS cureRingBufferU32Dequeue(RingBuffer32 *rbuf, uint32_t *ret)
{
if(rbuf->idx_front == rbuf->idx_rear){//if buffer underrun error occurs.
return BUFFER_FAILURE;
}else{
*ret = (rbuf->buffer[rbuf->idx_rear]);
rbuf->idx_rear++;
rbuf->idx_rear &= (rbuf->length -1);
return BUFFER_SUCCESS;
}
}
BUFFER_STATUS cureRingBufferU32GetElement(RingBuffer32 *rbuf, uint32_t *ret, uint16_t delaynum, uint16_t delay_buffer_length)
{
uint16_t buf;
if(rbuf->idx_front >= delaynum){
buf = rbuf->idx_front - delaynum;
}else{
buf = delay_buffer_length - (delaynum - rbuf->idx_front);
}
*ret = (rbuf->buffer[buf]);
return BUFFER_SUCCESS;
}
//BUFFER_STATUS cureRingBufferU32GetElement(RingBuffer32 *rbuf, uint32_t *ret, uint16_t delaynum, uint16_t delay_buffer_length)
//{
//
//
// if(rbuf->idx_front >= delaynum){
// rbuf->idx_rear = rbuf->idx_front - delaynum;
// }else{
// rbuf->idx_rear = delay_buffer_length - (delaynum - rbuf->idx_front);
// }
// *ret = (rbuf->buffer[rbuf->idx_rear]);
// return BUFFER_SUCCESS;
//
//}
|