summaryrefslogtreecommitdiff
path: root/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
blob: b1578a58b6ca8d5b740d50b6ab73882e7bdc721f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_cmplx_mat_mult_q15.c
 * Description:  Q15 complex matrix multiplication
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupMatrix
 */

/**
 * @addtogroup CmplxMatrixMult
 * @{
 */


/**
 * @brief Q15 Complex matrix multiplication
 * @param[in]       *pSrcA points to the first input complex matrix structure
 * @param[in]       *pSrcB points to the second input complex matrix structure
 * @param[out]      *pDst points to output complex matrix structure
 * @param[in]		*pScratch points to the array for storing intermediate results
 * @return     		The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 *
 * \par Conditions for optimum performance
 *  Input, output and state buffers should be aligned by 32-bit
 *
 * \par Restrictions
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
 *	In this case input, output, scratch buffers should be aligned by 32-bit
 *
 * @details
 * <b>Scaling and Overflow Behavior:</b>
 *
 * \par
 * The function is implemented using a 64-bit internal accumulator. The inputs to the
 * multiplications are in 1.15 format and multiplications yield a 2.30 result.
 * The 2.30 intermediate
 * results are accumulated in a 64-bit accumulator in 34.30 format. This approach
 * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
 * truncated to 34.15 format by discarding the low 15 bits and then saturated to
 * 1.15 format.
 *
 * \par
 * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function.
 *
 */




arm_status arm_mat_cmplx_mult_q15(
  const arm_matrix_instance_q15 * pSrcA,
  const arm_matrix_instance_q15 * pSrcB,
  arm_matrix_instance_q15 * pDst,
  q15_t * pScratch)
{
  /* accumulator */
  q15_t *pSrcBT = pScratch;                      /* input data matrix pointer for transpose */
  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
  q15_t *px;                                     /* Temporary output data matrix pointer */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
  uint16_t col, i = 0U, row = numRowsB, colCnt;  /* loop counters */
  arm_status status;                             /* status of matrix multiplication */
  q63_t sumReal, sumImag;

#ifdef UNALIGNED_SUPPORT_DISABLE
  q15_t in;                                      /* Temporary variable to hold the input value */
  q15_t a, b, c, d;
#else
  q31_t in;                                      /* Temporary variable to hold the input value */
  q31_t prod1, prod2;
  q31_t pSourceA, pSourceB;
#endif

#ifdef ARM_MATH_MATRIX_CHECK
  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif
  {
    /* Matrix transpose */
    do
    {
      /* Apply loop unrolling and exchange the columns with row elements */
      col = numColsB >> 2;

      /* The pointer px is set to starting address of the column being processed */
      px = pSrcBT + i;

      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
       ** a second loop below computes the remaining 1 to 3 samples. */
      while (col > 0U)
      {
#ifdef UNALIGNED_SUPPORT_DISABLE
        /* Read two elements from the row */
        in = *pInB++;
        *px = in;
        in = *pInB++;
        px[1] = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Read two elements from the row */
        in = *pInB++;
        *px = in;
        in = *pInB++;
        px[1] = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Read two elements from the row */
        in = *pInB++;
        *px = in;
        in = *pInB++;
        px[1] = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Read two elements from the row */
        in = *pInB++;
        *px = in;
        in = *pInB++;
        px[1] = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Decrement the column loop counter */
        col--;
      }

      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
       ** No loop unrolling is used. */
      col = numColsB % 0x4U;

      while (col > 0U)
      {
        /* Read two elements from the row */
        in = *pInB++;
        *px = in;
        in = *pInB++;
        px[1] = in;
#else

        /* Read two elements from the row */
        in = *__SIMD32(pInB)++;

        *__SIMD32(px) = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;


        /* Read two elements from the row */
        in = *__SIMD32(pInB)++;

        *__SIMD32(px) = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Read two elements from the row */
        in = *__SIMD32(pInB)++;

        *__SIMD32(px) = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Read two elements from the row */
        in = *__SIMD32(pInB)++;

        *__SIMD32(px) = in;

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Decrement the column loop counter */
        col--;
      }

      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
       ** No loop unrolling is used. */
      col = numColsB % 0x4U;

      while (col > 0U)
      {
        /* Read two elements from the row */
        in = *__SIMD32(pInB)++;

        *__SIMD32(px) = in;
#endif

        /* Update the pointer px to point to the next row of the transposed matrix */
        px += numRowsB * 2;

        /* Decrement the column loop counter */
        col--;
      }

      i = i + 2U;

      /* Decrement the row loop counter */
      row--;

    } while (row > 0U);

    /* Reset the variables for the usage in the following multiplication process */
    row = numRowsA;
    i = 0U;
    px = pDst->pData;

    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the transposed pSrcB data */
      pInB = pSrcBT;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sumReal = 0;
        sumImag = 0;

        /* Apply loop unrolling and compute 2 MACs simultaneously. */
        colCnt = numColsA >> 1;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pInA = pSrcA->pData + i * 2;


        /* matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */

#ifdef UNALIGNED_SUPPORT_DISABLE

          /* read real and imag values from pSrcA buffer */
          a = *pInA;
          b = *(pInA + 1U);
          /* read real and imag values from pSrcB buffer */
          c = *pInB;
          d = *(pInB + 1U);

          /* Multiply and Accumlates */
          sumReal += (q31_t) a *c;
          sumImag += (q31_t) a *d;
          sumReal -= (q31_t) b *d;
          sumImag += (q31_t) b *c;

          /* read next real and imag values from pSrcA buffer */
          a = *(pInA + 2U);
          b = *(pInA + 3U);
          /* read next real and imag values from pSrcB buffer */
          c = *(pInB + 2U);
          d = *(pInB + 3U);

          /* update pointer */
          pInA += 4U;

          /* Multiply and Accumlates */
          sumReal += (q31_t) a *c;
          sumImag += (q31_t) a *d;
          sumReal -= (q31_t) b *d;
          sumImag += (q31_t) b *c;
          /* update pointer */
          pInB += 4U;
#else
          /* read real and imag values from pSrcA and pSrcB buffer */
          pSourceA = *__SIMD32(pInA)++;
          pSourceB = *__SIMD32(pInB)++;

          /* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
          prod1 = -__SMUSD(pSourceA, pSourceB);
#else
          prod1 = __SMUSD(pSourceA, pSourceB);
#endif
          prod2 = __SMUADX(pSourceA, pSourceB);
          sumReal += (q63_t) prod1;
          sumImag += (q63_t) prod2;

          /* read real and imag values from pSrcA and pSrcB buffer */
          pSourceA = *__SIMD32(pInA)++;
          pSourceB = *__SIMD32(pInB)++;

          /* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
          prod1 = -__SMUSD(pSourceA, pSourceB);
#else
          prod1 = __SMUSD(pSourceA, pSourceB);
#endif
          prod2 = __SMUADX(pSourceA, pSourceB);
          sumReal += (q63_t) prod1;
          sumImag += (q63_t) prod2;

#endif /*      #ifdef UNALIGNED_SUPPORT_DISABLE */

          /* Decrement the loop counter */
          colCnt--;
        }

        /* process odd column samples */
        if ((numColsA & 0x1U) > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */

#ifdef UNALIGNED_SUPPORT_DISABLE

          /* read real and imag values from pSrcA and pSrcB buffer */
          a = *pInA++;
          b = *pInA++;
          c = *pInB++;
          d = *pInB++;

          /* Multiply and Accumlates */
          sumReal += (q31_t) a *c;
          sumImag += (q31_t) a *d;
          sumReal -= (q31_t) b *d;
          sumImag += (q31_t) b *c;

#else
          /* read real and imag values from pSrcA and pSrcB buffer */
          pSourceA = *__SIMD32(pInA)++;
          pSourceB = *__SIMD32(pInB)++;

          /* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
          prod1 = -__SMUSD(pSourceA, pSourceB);
#else
          prod1 = __SMUSD(pSourceA, pSourceB);
#endif
          prod2 = __SMUADX(pSourceA, pSourceB);
          sumReal += (q63_t) prod1;
          sumImag += (q63_t) prod2;

#endif /*      #ifdef UNALIGNED_SUPPORT_DISABLE */

        }

        /* Saturate and store the result in the destination buffer */

        *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
        *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);

      i = i + numColsA;

      /* Decrement the row loop counter */
      row--;

    } while (row > 0U);

    /* set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}

/**
 * @} end of MatrixMult group
 */