summaryrefslogtreecommitdiff
path: root/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c
blob: 2a089683c7a46f1b540da4386bb6dc3f7de32c3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_biquad_cascade_df1_fast_q15.c
 * Description:  Fast processing function for the Q15 Biquad cascade filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup BiquadCascadeDF1
 * @{
 */

/**
 * @details
 * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
 * @param[in]  *pSrc points to the block of input data.
 * @param[out] *pDst points to the block of output data.
 * @param[in]  blockSize number of samples to process per call.
 * @return none.
 *
 * <b>Scaling and Overflow Behavior:</b>
 * \par
 * This fast version uses a 32-bit accumulator with 2.30 format.
 * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
 * Thus, if the accumulator result overflows it wraps around and distorts the result.
 * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
 * The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
 *
 * \par
 * Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.  Both the slow and the fast versions use the same instance structure.
 * Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
 *
 */

void arm_biquad_cascade_df1_fast_q15(
  const arm_biquad_casd_df1_inst_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q31_t in;                                      /*  Temporary variable to hold input value       */
  q31_t out;                                     /*  Temporary variable to hold output value      */
  q31_t b0;                                      /*  Temporary variable to hold bo value          */
  q31_t b1, a1;                                  /*  Filter coefficients                          */
  q31_t state_in, state_out;                     /*  Filter state variables                       */
  q31_t acc;                                     /*  Accumulator                                  */
  int32_t shift = (int32_t) (15 - S->postShift); /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  uint32_t sample, stage = S->numStages;         /*  Stage loop counter                           */



  do
  {

    /* Read the b0 and 0 coefficients using SIMD  */
    b0 = *__SIMD32(pCoeffs)++;

    /* Read the b1 and b2 coefficients using SIMD */
    b1 = *__SIMD32(pCoeffs)++;

    /* Read the a1 and a2 coefficients using SIMD */
    a1 = *__SIMD32(pCoeffs)++;

    /* Read the input state values from the state buffer:  x[n-1], x[n-2] */
    state_in = *__SIMD32(pState)++;

    /* Read the output state values from the state buffer:  y[n-1], y[n-2] */
    state_out = *__SIMD32(pState)--;

    /* Apply loop unrolling and compute 2 output values simultaneously. */
    /*      The variable acc hold output values that are being computed:
     *
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
     */
    sample = blockSize >> 1U;

    /* First part of the processing with loop unrolling.  Compute 2 outputs at a time.
     ** a second loop below computes the remaining 1 sample. */
    while (sample > 0U)
    {

      /* Read the input */
      in = *__SIMD32(pIn)++;

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUAD(b0, in);
      /* acc =  b1 * x[n-1] + acc +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
      state_out = __PKHBT(state_out >> 16, (out), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUADX(b0, in);
      /* acc0 =  b1 * x[n-1] , acc0 +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);


      /* Store the output in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);

#else

      *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in >> 16, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */


      /* Decrement the loop counter */
      sample--;

    }

    /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
     ** No loop unrolling is used. */

    if ((blockSize & 0x1U) != 0U)
    {
      /* Read the input */
      in = *pIn++;

      /* out =  b0 * x[n] + 0 * 0 */

#ifndef  ARM_MATH_BIG_ENDIAN

      out = __SMUAD(b0, in);

#else

      out = __SMUADX(b0, in);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

      /* acc =  b1 * x[n-1], acc +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) out;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

    }

    /*  The first stage goes from the input buffer to the output buffer.  */
    /*  Subsequent (numStages - 1) occur in-place in the output buffer  */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the state array */
    *__SIMD32(pState)++ = state_in;
    *__SIMD32(pState)++ = state_out;


    /* Decrement the loop counter */
    stage--;

  } while (stage > 0U);
}


/**
 * @} end of BiquadCascadeDF1 group
 */