summaryrefslogtreecommitdiff
path: root/midi-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c
blob: 87908ed8a600b1f3b93ba45e8db29b18e4bba8ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
* Title:         arm_linear_interp_example_f32.c
*
* Description:   Example code demonstrating usage of sin function
*                and uses linear interpolation to get higher precision
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
 * -------------------------------------------------------------------- */


/**
 * @ingroup groupExamples
 */

/**
 * @defgroup LinearInterpExample Linear Interpolate Example
 *
 * <b> CMSIS DSP Software Library -- Linear Interpolate Example  </b>
 *
 * <b> Description </b>
 * This example demonstrates usage of linear interpolate modules and fast math modules.
 * Method 1 uses fast math sine function to calculate sine values using cubic interpolation and method 2 uses
 * linear interpolation function and results are compared to reference output.
 * Example shows linear interpolation function can be used to get higher precision compared to fast math sin calculation.
 *
 * \par Block Diagram:
 * \par
 * \image html linearInterpExampleMethod1.gif "Method 1: Sine caluclation using fast math"
 * \par
 * \image html linearInterpExampleMethod2.gif "Method 2: Sine caluclation using interpolation function"
 *
 * \par Variables Description:
 * \par
 * \li \c testInputSin_f32         points to the input values for sine calculation
 * \li \c testRefSinOutput32_f32   points to the reference values caculated from sin() matlab function
 * \li \c testOutput               points to output buffer calculation from cubic interpolation
 * \li \c testLinIntOutput         points to output buffer calculation from linear interpolation
 * \li \c snr1                     Signal to noise ratio for reference and cubic interpolation output
 * \li \c snr2                     Signal to noise ratio for reference and linear interpolation output
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_sin_f32()
 * - arm_linear_interp_f32()
 *
 * <b> Refer  </b>
 * \link arm_linear_interp_example_f32.c \endlink
 *
 */


/** \example arm_linear_interp_example_f32.c
  */

#include "arm_math.h"
#include "math_helper.h"

#define SNR_THRESHOLD           90
#define TEST_LENGTH_SAMPLES     10
#define XSPACING               (0.00005f)

/* ----------------------------------------------------------------------
* Test input data for F32 SIN function
* Generated by the MATLAB rand() function
* randn('state', 0)
* xi = (((1/4.18318581819710)* randn(blockSize, 1) * 2* pi));
* --------------------------------------------------------------------*/
float32_t testInputSin_f32[TEST_LENGTH_SAMPLES] =
{
   -0.649716504673081170, -2.501723745497831200,
    0.188250329003310100,  0.432092748487532540,
   -1.722010988459680800,  1.788766476323060600,
    1.786136060975809500, -0.056525543169408797,
    0.491596272728153760,  0.262309671126153390
};

/*------------------------------------------------------------------------------
*  Reference out of SIN F32 function for Block Size = 10
*  Calculated from sin(testInputSin_f32)
*------------------------------------------------------------------------------*/
float32_t testRefSinOutput32_f32[TEST_LENGTH_SAMPLES] =
{
   -0.604960695383043530, -0.597090287967934840,
    0.187140422442966500,  0.418772124875992690,
   -0.988588831792106880,  0.976338412038794010,
    0.976903856413481100, -0.056495446835214236,
    0.472033731854734240,  0.259311907228582830
};

/*------------------------------------------------------------------------------
*  Method 1: Test out Buffer Calculated from Cubic Interpolation
*------------------------------------------------------------------------------*/
float32_t testOutput[TEST_LENGTH_SAMPLES];

/*------------------------------------------------------------------------------
*  Method 2: Test out buffer Calculated from Linear Interpolation
*------------------------------------------------------------------------------*/
float32_t testLinIntOutput[TEST_LENGTH_SAMPLES];

/*------------------------------------------------------------------------------
*  External table used for linear interpolation
*------------------------------------------------------------------------------*/
extern float arm_linear_interep_table[188495];

/* ----------------------------------------------------------------------
* Global Variables for caluclating SNR's for Method1 & Method 2
* ------------------------------------------------------------------- */
float32_t snr1;
float32_t snr2;

/* ----------------------------------------------------------------------------
* Calculation of Sine values from Cubic Interpolation and Linear interpolation
* ---------------------------------------------------------------------------- */
int32_t main(void)
{
  uint32_t i;
  arm_status status;

  arm_linear_interp_instance_f32 S = {188495, -3.141592653589793238, XSPACING, &arm_linear_interep_table[0]};

  /*------------------------------------------------------------------------------
  *  Method 1: Test out Calculated from Cubic Interpolation
  *------------------------------------------------------------------------------*/
  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
  {
    testOutput[i] = arm_sin_f32(testInputSin_f32[i]);
  }

  /*------------------------------------------------------------------------------
  *  Method 2: Test out Calculated from Cubic Interpolation and Linear interpolation
  *------------------------------------------------------------------------------*/

  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
  {
      testLinIntOutput[i] = arm_linear_interp_f32(&S, testInputSin_f32[i]);
  }

  /*------------------------------------------------------------------------------
  *            SNR calculation for method 1
  *------------------------------------------------------------------------------*/
  snr1 = arm_snr_f32(testRefSinOutput32_f32, testOutput, 2);

  /*------------------------------------------------------------------------------
  *            SNR calculation for method 2
  *------------------------------------------------------------------------------*/
  snr2 = arm_snr_f32(testRefSinOutput32_f32, testLinIntOutput, 2);

  /*------------------------------------------------------------------------------
  *            Initialise status depending on SNR calculations
  *------------------------------------------------------------------------------*/
  if ( snr2 > snr1)
  {
    status = ARM_MATH_SUCCESS;
  }
  else
  {
    status = ARM_MATH_TEST_FAILURE;
  }

  /* ----------------------------------------------------------------------
  ** Loop here if the signals fail the PASS check.
  ** This denotes a test failure
  ** ------------------------------------------------------------------- */
  if ( status != ARM_MATH_SUCCESS)
  {
    while (1);
  }

  while (1);                             /* main function does not return */
}

 /** \endlink */