summaryrefslogtreecommitdiff
path: root/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_lms_norm_q31.c
blob: bc65fa6be43bc25a19ce45072213a045035686d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_lms_norm_q31.c
 * Description:  Processing function for the Q31 NLMS filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup LMS_NORM
 * @{
 */

/**
* @brief Processing function for Q31 normalized LMS filter.
* @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[in] *pRef points to the block of reference data.
* @param[out] *pOut points to the block of output data.
* @param[out] *pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate
* multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by
* log2(numTaps) bits. The reference signal should not be scaled down.
* After all multiply-accumulates are performed, the 2.62 accumulator is shifted
* and saturated to 1.31 format to yield the final result.
* The output signal and error signal are in 1.31 format.
*
* \par
* 	In this filter, filter coefficients are updated for each sample and the
* updation of filter cofficients are saturted.
*
*/

void arm_lms_norm_q31(
  arm_lms_norm_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pRef,
  q31_t * pOut,
  q31_t * pErr,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t *px, *pb;                                /* Temporary pointers for state and coefficient buffers */
  q31_t mu = S->mu;                              /* Adaptive factor */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */
  q63_t energy;                                  /* Energy of the input */
  q63_t acc;                                     /* Accumulator */
  q31_t e = 0, d = 0;                            /* error, reference data sample */
  q31_t w = 0, in;                               /* weight factor and state */
  q31_t x0;                                      /* temporary variable to hold input sample */
//  uint32_t shift = 32U - ((uint32_t) S->postShift + 1U);        /* Shift to be applied to the output */
  q31_t errorXmu, oneByEnergy;                   /* Temporary variables to store error and mu product and reciprocal of energy */
  q31_t postShift;                               /* Post shift to be applied to weight after reciprocal calculation */
  q31_t coef;                                    /* Temporary variable for coef */
  q31_t acc_l, acc_h;                            /*  temporary input */
  uint32_t uShift = ((uint32_t) S->postShift + 1U);
  uint32_t lShift = 32U - uShift;                /*  Shift to be applied to the output */

  energy = S->energy;
  x0 = S->x0;

  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

  /* Loop over blockSize number of values */
  blkCnt = blockSize;


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  while (blkCnt > 0U)
  {

    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc;

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Read the sample from input buffer */
    in = *pSrc++;

    /* Update the energy calculation */
    energy = (q31_t) ((((q63_t) energy << 32) -
                       (((q63_t) x0 * x0) << 1)) >> 32);
    energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */
      acc += ((q63_t) (*px++)) * (*pb++);
      acc += ((q63_t) (*px++)) * (*pb++);
      acc += ((q63_t) (*px++)) * (*pb++);
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Converting the result to 1.31 format */
    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;

    /* Store the result from accumulator into the destination buffer. */
    *pOut++ = (q31_t) acc;

    /* Compute and store error */
    d = *pRef++;
    e = d - (q31_t) acc;
    *pErr++ = e;

    /* Calculates the reciprocal of energy */
    postShift = arm_recip_q31(energy + DELTA_Q31,
                              &oneByEnergy, &S->recipTable[0]);

    /* Calculation of product of (e * mu) */
    errorXmu = (q31_t) (((q63_t) e * mu) >> 31);

    /* Weighting factor for the normalized version */
    w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Update filter coefficients */
    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */

      /* coef is in 2.30 format */
      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      /* get coef in 1.31 format by left shifting */
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      /* update coefficient buffer to next coefficient */
      pb++;

      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      pb++;

      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      pb++;

      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */
      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Read the sample from state buffer */
    x0 = *pState;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Save energy and x0 values for the next frame */
  S->energy = (q31_t) energy;
  S->x0 = x0;

  /* Processing is complete. Now copy the last numTaps - 1 samples to the
     satrt of the state buffer. This prepares the state buffer for the
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /* Loop unrolling for (numTaps - 1U) samples copy */
  tapCnt = (numTaps - 1U) >> 2U;

  /* copy data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1U) % 0x4U;

  /* Copy the remaining q31_t data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while (blkCnt > 0U)
  {

    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc;

    /* Initialize pState pointer */
    px = pState;

    /* Initialize pCoeffs pointer */
    pb = pCoeffs;

    /* Read the sample from input buffer */
    in = *pSrc++;

    /* Update the energy calculation */
    energy =
      (q31_t) ((((q63_t) energy << 32) - (((q63_t) x0 * x0) << 1)) >> 32);
    energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Converting the result to 1.31 format */
    /* Converting the result to 1.31 format */
    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;


    //acc = (q31_t) (acc >> shift);

    /* Store the result from accumulator into the destination buffer. */
    *pOut++ = (q31_t) acc;

    /* Compute and store error */
    d = *pRef++;
    e = d - (q31_t) acc;
    *pErr++ = e;

    /* Calculates the reciprocal of energy */
    postShift =
      arm_recip_q31(energy + DELTA_Q31, &oneByEnergy, &S->recipTable[0]);

    /* Calculation of product of (e * mu) */
    errorXmu = (q31_t) (((q63_t) e * mu) >> 31);

    /* Weighting factor for the normalized version */
    w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while (tapCnt > 0U)
    {
      /* Perform the multiply-accumulate */
      /* coef is in 2.30 format */
      coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
      /* get coef in 1.31 format by left shifting */
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1U));
      /* update coefficient buffer to next coefficient */
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Read the sample from state buffer */
    x0 = *pState;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Save energy and x0 values for the next frame */
  S->energy = (q31_t) energy;
  S->x0 = x0;

  /* Processing is complete. Now copy the last numTaps - 1 samples to the
     start of the state buffer. This prepares the state buffer for the
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /* Loop for (numTaps - 1U) samples copy */
  tapCnt = (numTaps - 1U);

  /* Copy the remaining q31_t data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#endif /*   #if defined (ARM_MATH_DSP) */

}

/**
 * @} end of LMS_NORM group
 */