summaryrefslogtreecommitdiff
path: root/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_lattice_f32.c
blob: 1b6d0fb8663c9b424a404df9fe006d07dab06b27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_lattice_f32.c
 * Description:  Processing function for the floating-point FIR Lattice filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @defgroup FIR_Lattice Finite Impulse Response (FIR) Lattice Filters
 *
 * This set of functions implements Finite Impulse Response (FIR) lattice filters
 * for Q15, Q31 and floating-point data types.  Lattice filters are used in a
 * variety of adaptive filter applications.  The filter structure is feedforward and
 * the net impulse response is finite length.
 * The functions operate on blocks
 * of input and output data and each call to the function processes
 * <code>blockSize</code> samples through the filter.  <code>pSrc</code> and
 * <code>pDst</code> point to input and output arrays containing <code>blockSize</code> values.
 *
 * \par Algorithm:
 * \image html FIRLattice.gif "Finite Impulse Response Lattice filter"
 * The following difference equation is implemented:
 * <pre>
 *    f0[n] = g0[n] = x[n]
 *    fm[n] = fm-1[n] + km * gm-1[n-1] for m = 1, 2, ...M
 *    gm[n] = km * fm-1[n] + gm-1[n-1] for m = 1, 2, ...M
 *    y[n] = fM[n]
 * </pre>
 * \par
 * <code>pCoeffs</code> points to tha array of reflection coefficients of size <code>numStages</code>.
 * Reflection Coefficients are stored in the following order.
 * \par
 * <pre>
 *    {k1, k2, ..., kM}
 * </pre>
 * where M is number of stages
 * \par
 * <code>pState</code> points to a state array of size <code>numStages</code>.
 * The state variables (g values) hold previous inputs and are stored in the following order.
 * <pre>
 *    {g0[n], g1[n], g2[n] ...gM-1[n]}
 * </pre>
 * The state variables are updated after each block of data is processed; the coefficients are untouched.
 * \par Instance Structure
 * The coefficients and state variables for a filter are stored together in an instance data structure.
 * A separate instance structure must be defined for each filter.
 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
 * There are separate instance structure declarations for each of the 3 supported data types.
 *
 * \par Initialization Functions
 * There is also an associated initialization function for each data type.
 * The initialization function performs the following operations:
 * - Sets the values of the internal structure fields.
 * - Zeros out the values in the state buffer.
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numStages, pCoeffs, pState. Also set all of the values in pState to zero.
 *
 * \par
 * Use of the initialization function is optional.
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
 * To place an instance structure into a const data section, the instance structure must be manually initialized.
 * Set the values in the state buffer to zeros and then manually initialize the instance structure as follows:
 * <pre>
 *arm_fir_lattice_instance_f32 S = {numStages, pState, pCoeffs};
 *arm_fir_lattice_instance_q31 S = {numStages, pState, pCoeffs};
 *arm_fir_lattice_instance_q15 S = {numStages, pState, pCoeffs};
 * </pre>
 * \par
 * where <code>numStages</code> is the number of stages in the filter; <code>pState</code> is the address of the state buffer;
 * <code>pCoeffs</code> is the address of the coefficient buffer.
 * \par Fixed-Point Behavior
 * Care must be taken when using the fixed-point versions of the FIR Lattice filter functions.
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
 * Refer to the function specific documentation below for usage guidelines.
 */

/**
 * @addtogroup FIR_Lattice
 * @{
 */


  /**
   * @brief Processing function for the floating-point FIR lattice filter.
   * @param[in]  *S        points to an instance of the floating-point FIR lattice structure.
   * @param[in]  *pSrc     points to the block of input data.
   * @param[out] *pDst     points to the block of output data
   * @param[in]  blockSize number of samples to process.
   * @return none.
   */

void arm_fir_lattice_f32(
  const arm_fir_lattice_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  uint32_t blockSize)
{
  float32_t *pState;                             /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *px;                                 /* temporary state pointer */
  float32_t *pk;                                 /* temporary coefficient pointer */


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t fcurr1, fnext1, gcurr1, gnext1;      /* temporary variables for first sample in loop unrolling */
  float32_t fcurr2, fnext2, gnext2;              /* temporary variables for second sample in loop unrolling */
  float32_t fcurr3, fnext3, gnext3;              /* temporary variables for third sample in loop unrolling */
  float32_t fcurr4, fnext4, gnext4;              /* temporary variables for fourth sample in loop unrolling */
  uint32_t numStages = S->numStages;             /* Number of stages in the filter */
  uint32_t blkCnt, stageCnt;                     /* temporary variables for counts */

  gcurr1 = 0.0f;
  pState = &S->pState[0];

  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
     a second loop below computes the remaining 1 to 3 samples. */
  while (blkCnt > 0U)
  {

    /* Read two samples from input buffer */
    /* f0(n) = x(n) */
    fcurr1 = *pSrc++;
    fcurr2 = *pSrc++;

    /* Initialize coeff pointer */
    pk = (pCoeffs);

    /* Initialize state pointer */
    px = pState;

    /* Read g0(n-1) from state */
    gcurr1 = *px;

    /* Process first sample for first tap */
    /* f1(n) = f0(n) +  K1 * g0(n-1) */
    fnext1 = fcurr1 + ((*pk) * gcurr1);
    /* g1(n) = f0(n) * K1  +  g0(n-1) */
    gnext1 = (fcurr1 * (*pk)) + gcurr1;

    /* Process second sample for first tap */
    /* for sample 2 processing */
    fnext2 = fcurr2 + ((*pk) * fcurr1);
    gnext2 = (fcurr2 * (*pk)) + fcurr1;

    /* Read next two samples from input buffer */
    /* f0(n+2) = x(n+2) */
    fcurr3 = *pSrc++;
    fcurr4 = *pSrc++;

    /* Copy only last input samples into the state buffer
       which will be used for next four samples processing */
    *px++ = fcurr4;

    /* Process third sample for first tap */
    fnext3 = fcurr3 + ((*pk) * fcurr2);
    gnext3 = (fcurr3 * (*pk)) + fcurr2;

    /* Process fourth sample for first tap */
    fnext4 = fcurr4 + ((*pk) * fcurr3);
    gnext4 = (fcurr4 * (*pk++)) + fcurr3;

    /* Update of f values for next coefficient set processing */
    fcurr1 = fnext1;
    fcurr2 = fnext2;
    fcurr3 = fnext3;
    fcurr4 = fnext4;

    /* Loop unrolling.  Process 4 taps at a time . */
    stageCnt = (numStages - 1U) >> 2U;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numStages-3 coefficients. */

    /* Process 2nd, 3rd, 4th and 5th taps ... here */
    while (stageCnt > 0U)
    {
      /* Read g1(n-1), g3(n-1) .... from state */
      gcurr1 = *px;

      /* save g1(n) in state buffer */
      *px++ = gnext4;

      /* Process first sample for 2nd, 6th .. tap */
      /* Sample processing for K2, K6.... */
      /* f2(n) = f1(n) +  K2 * g1(n-1) */
      fnext1 = fcurr1 + ((*pk) * gcurr1);
      /* Process second sample for 2nd, 6th .. tap */
      /* for sample 2 processing */
      fnext2 = fcurr2 + ((*pk) * gnext1);
      /* Process third sample for 2nd, 6th .. tap */
      fnext3 = fcurr3 + ((*pk) * gnext2);
      /* Process fourth sample for 2nd, 6th .. tap */
      fnext4 = fcurr4 + ((*pk) * gnext3);

      /* g2(n) = f1(n) * K2  +  g1(n-1) */
      /* Calculation of state values for next stage */
      gnext4 = (fcurr4 * (*pk)) + gnext3;
      gnext3 = (fcurr3 * (*pk)) + gnext2;
      gnext2 = (fcurr2 * (*pk)) + gnext1;
      gnext1 = (fcurr1 * (*pk++)) + gcurr1;


      /* Read g2(n-1), g4(n-1) .... from state */
      gcurr1 = *px;

      /* save g2(n) in state buffer */
      *px++ = gnext4;

      /* Sample processing for K3, K7.... */
      /* Process first sample for 3rd, 7th .. tap */
      /* f3(n) = f2(n) +  K3 * g2(n-1) */
      fcurr1 = fnext1 + ((*pk) * gcurr1);
      /* Process second sample for 3rd, 7th .. tap */
      fcurr2 = fnext2 + ((*pk) * gnext1);
      /* Process third sample for 3rd, 7th .. tap */
      fcurr3 = fnext3 + ((*pk) * gnext2);
      /* Process fourth sample for 3rd, 7th .. tap */
      fcurr4 = fnext4 + ((*pk) * gnext3);

      /* Calculation of state values for next stage */
      /* g3(n) = f2(n) * K3  +  g2(n-1) */
      gnext4 = (fnext4 * (*pk)) + gnext3;
      gnext3 = (fnext3 * (*pk)) + gnext2;
      gnext2 = (fnext2 * (*pk)) + gnext1;
      gnext1 = (fnext1 * (*pk++)) + gcurr1;


      /* Read g1(n-1), g3(n-1) .... from state */
      gcurr1 = *px;

      /* save g3(n) in state buffer */
      *px++ = gnext4;

      /* Sample processing for K4, K8.... */
      /* Process first sample for 4th, 8th .. tap */
      /* f4(n) = f3(n) +  K4 * g3(n-1) */
      fnext1 = fcurr1 + ((*pk) * gcurr1);
      /* Process second sample for 4th, 8th .. tap */
      /* for sample 2 processing */
      fnext2 = fcurr2 + ((*pk) * gnext1);
      /* Process third sample for 4th, 8th .. tap */
      fnext3 = fcurr3 + ((*pk) * gnext2);
      /* Process fourth sample for 4th, 8th .. tap */
      fnext4 = fcurr4 + ((*pk) * gnext3);

      /* g4(n) = f3(n) * K4  +  g3(n-1) */
      /* Calculation of state values for next stage */
      gnext4 = (fcurr4 * (*pk)) + gnext3;
      gnext3 = (fcurr3 * (*pk)) + gnext2;
      gnext2 = (fcurr2 * (*pk)) + gnext1;
      gnext1 = (fcurr1 * (*pk++)) + gcurr1;

      /* Read g2(n-1), g4(n-1) .... from state */
      gcurr1 = *px;

      /* save g4(n) in state buffer */
      *px++ = gnext4;

      /* Sample processing for K5, K9.... */
      /* Process first sample for 5th, 9th .. tap */
      /* f5(n) = f4(n) +  K5 * g4(n-1) */
      fcurr1 = fnext1 + ((*pk) * gcurr1);
      /* Process second sample for 5th, 9th .. tap */
      fcurr2 = fnext2 + ((*pk) * gnext1);
      /* Process third sample for 5th, 9th .. tap */
      fcurr3 = fnext3 + ((*pk) * gnext2);
      /* Process fourth sample for 5th, 9th .. tap */
      fcurr4 = fnext4 + ((*pk) * gnext3);

      /* Calculation of state values for next stage */
      /* g5(n) = f4(n) * K5  +  g4(n-1) */
      gnext4 = (fnext4 * (*pk)) + gnext3;
      gnext3 = (fnext3 * (*pk)) + gnext2;
      gnext2 = (fnext2 * (*pk)) + gnext1;
      gnext1 = (fnext1 * (*pk++)) + gcurr1;

      stageCnt--;
    }

    /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
    stageCnt = (numStages - 1U) % 0x4U;

    while (stageCnt > 0U)
    {
      gcurr1 = *px;

      /* save g value in state buffer */
      *px++ = gnext4;

      /* Process four samples for last three taps here */
      fnext1 = fcurr1 + ((*pk) * gcurr1);
      fnext2 = fcurr2 + ((*pk) * gnext1);
      fnext3 = fcurr3 + ((*pk) * gnext2);
      fnext4 = fcurr4 + ((*pk) * gnext3);

      /* g1(n) = f0(n) * K1  +  g0(n-1) */
      gnext4 = (fcurr4 * (*pk)) + gnext3;
      gnext3 = (fcurr3 * (*pk)) + gnext2;
      gnext2 = (fcurr2 * (*pk)) + gnext1;
      gnext1 = (fcurr1 * (*pk++)) + gcurr1;

      /* Update of f values for next coefficient set processing */
      fcurr1 = fnext1;
      fcurr2 = fnext2;
      fcurr3 = fnext3;
      fcurr4 = fnext4;

      stageCnt--;

    }

    /* The results in the 4 accumulators, store in the destination buffer. */
    /* y(n) = fN(n) */
    *pDst++ = fcurr1;
    *pDst++ = fcurr2;
    *pDst++ = fcurr3;
    *pDst++ = fcurr4;

    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4U;

  while (blkCnt > 0U)
  {
    /* f0(n) = x(n) */
    fcurr1 = *pSrc++;

    /* Initialize coeff pointer */
    pk = (pCoeffs);

    /* Initialize state pointer */
    px = pState;

    /* read g2(n) from state buffer */
    gcurr1 = *px;

    /* for sample 1 processing */
    /* f1(n) = f0(n) +  K1 * g0(n-1) */
    fnext1 = fcurr1 + ((*pk) * gcurr1);
    /* g1(n) = f0(n) * K1  +  g0(n-1) */
    gnext1 = (fcurr1 * (*pk++)) + gcurr1;

    /* save g1(n) in state buffer */
    *px++ = fcurr1;

    /* f1(n) is saved in fcurr1
       for next stage processing */
    fcurr1 = fnext1;

    stageCnt = (numStages - 1U);

    /* stage loop */
    while (stageCnt > 0U)
    {
      /* read g2(n) from state buffer */
      gcurr1 = *px;

      /* save g1(n) in state buffer */
      *px++ = gnext1;

      /* Sample processing for K2, K3.... */
      /* f2(n) = f1(n) +  K2 * g1(n-1) */
      fnext1 = fcurr1 + ((*pk) * gcurr1);
      /* g2(n) = f1(n) * K2  +  g1(n-1) */
      gnext1 = (fcurr1 * (*pk++)) + gcurr1;

      /* f1(n) is saved in fcurr1
         for next stage processing */
      fcurr1 = fnext1;

      stageCnt--;

    }

    /* y(n) = fN(n) */
    *pDst++ = fcurr1;

    blkCnt--;

  }

#else

  /* Run the below code for Cortex-M0 */

  float32_t fcurr, fnext, gcurr, gnext;          /* temporary variables */
  uint32_t numStages = S->numStages;             /* Length of the filter */
  uint32_t blkCnt, stageCnt;                     /* temporary variables for counts */

  pState = &S->pState[0];

  blkCnt = blockSize;

  while (blkCnt > 0U)
  {
    /* f0(n) = x(n) */
    fcurr = *pSrc++;

    /* Initialize coeff pointer */
    pk = pCoeffs;

    /* Initialize state pointer */
    px = pState;

    /* read g0(n-1) from state buffer */
    gcurr = *px;

    /* for sample 1 processing */
    /* f1(n) = f0(n) +  K1 * g0(n-1) */
    fnext = fcurr + ((*pk) * gcurr);
    /* g1(n) = f0(n) * K1  +  g0(n-1) */
    gnext = (fcurr * (*pk++)) + gcurr;

    /* save f0(n) in state buffer */
    *px++ = fcurr;

    /* f1(n) is saved in fcurr
       for next stage processing */
    fcurr = fnext;

    stageCnt = (numStages - 1U);

    /* stage loop */
    while (stageCnt > 0U)
    {
      /* read g2(n) from state buffer */
      gcurr = *px;

      /* save g1(n) in state buffer */
      *px++ = gnext;

      /* Sample processing for K2, K3.... */
      /* f2(n) = f1(n) +  K2 * g1(n-1) */
      fnext = fcurr + ((*pk) * gcurr);
      /* g2(n) = f1(n) * K2  +  g1(n-1) */
      gnext = (fcurr * (*pk++)) + gcurr;

      /* f1(n) is saved in fcurr1
         for next stage processing */
      fcurr = fnext;

      stageCnt--;

    }

    /* y(n) = fN(n) */
    *pDst++ = fcurr;

    blkCnt--;

  }

#endif /*   #if defined (ARM_MATH_DSP) */

}

/**
 * @} end of FIR_Lattice group
 */