summaryrefslogtreecommitdiff
path: root/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
blob: c524756a7620bf7100c24edb9bf74eaf97152041 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_biquad_cascade_df1_q15.c
 * Description:  Processing function for the Q15 Biquad cascade DirectFormI(DF1) filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup BiquadCascadeDF1
 * @{
 */

/**
 * @brief Processing function for the Q15 Biquad cascade filter.
 * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
 * @param[in]  *pSrc points to the block of input data.
 * @param[out] *pDst points to the location where the output result is written.
 * @param[in]  blockSize number of samples to process per call.
 * @return none.
 *
 *
 * <b>Scaling and Overflow Behavior:</b>
 * \par
 * The function is implemented using a 64-bit internal accumulator.
 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
 * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
 * Finally, the result is saturated to 1.15 format.
 *
 * \par
 * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
 */

void arm_biquad_cascade_df1_q15(
  const arm_biquad_casd_df1_inst_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q31_t in;                                      /*  Temporary variable to hold input value       */
  q31_t out;                                     /*  Temporary variable to hold output value      */
  q31_t b0;                                      /*  Temporary variable to hold bo value          */
  q31_t b1, a1;                                  /*  Filter coefficients                          */
  q31_t state_in, state_out;                     /*  Filter state variables                       */
  q31_t acc_l, acc_h;
  q63_t acc;                                     /*  Accumulator                                  */
  int32_t lShift = (15 - (int32_t) S->postShift);       /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  uint32_t sample, stage = (uint32_t) S->numStages;     /*  Stage loop counter                           */
  int32_t uShift = (32 - lShift);

  do
  {
    /* Read the b0 and 0 coefficients using SIMD  */
    b0 = *__SIMD32(pCoeffs)++;

    /* Read the b1 and b2 coefficients using SIMD */
    b1 = *__SIMD32(pCoeffs)++;

    /* Read the a1 and a2 coefficients using SIMD */
    a1 = *__SIMD32(pCoeffs)++;

    /* Read the input state values from the state buffer:  x[n-1], x[n-2] */
    state_in = *__SIMD32(pState)++;

    /* Read the output state values from the state buffer:  y[n-1], y[n-2] */
    state_out = *__SIMD32(pState)--;

    /* Apply loop unrolling and compute 2 output values simultaneously. */
    /*      The variable acc hold output values that are being computed:
     *
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
     */
    sample = blockSize >> 1U;

    /* First part of the processing with loop unrolling.  Compute 2 outputs at a time.
     ** a second loop below computes the remaining 1 sample. */
    while (sample > 0U)
    {

      /* Read the input */
      in = *__SIMD32(pIn)++;

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUAD(b0, in);

      /* acc +=  b1 * x[n-1] +  b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] +  a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      /* Calc lower part of acc */
      acc_l = acc & 0xffffffff;

      /* Calc upper part of acc */
      acc_h = (acc >> 32) & 0xffffffff;

      /* Apply shift for lower part of acc and upper part of acc */
      out = (uint32_t) acc_l >> lShift | acc_h << uShift;

      out = __SSAT(out, 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
      state_out = __PKHBT(state_out >> 16, (out), 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUADX(b0, in);
      /* acc +=  b1 * x[n-1] +  b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      /* Calc lower part of acc */
      acc_l = acc & 0xffffffff;

      /* Calc upper part of acc */
      acc_h = (acc >> 32) & 0xffffffff;

      /* Apply shift for lower part of acc and upper part of acc */
      out = (uint32_t) acc_l >> lShift | acc_h << uShift;

      out = __SSAT(out, 16);

      /* Store the output in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);

#else

      *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in >> 16, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */


      /* Decrement the loop counter */
      sample--;

    }

    /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
     ** No loop unrolling is used. */

    if ((blockSize & 0x1U) != 0U)
    {
      /* Read the input */
      in = *pIn++;

      /* out =  b0 * x[n] + 0 * 0 */

#ifndef  ARM_MATH_BIG_ENDIAN

      out = __SMUAD(b0, in);

#else

      out = __SMUADX(b0, in);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

      /* acc =  b1 * x[n-1] + b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      /* Calc lower part of acc */
      acc_l = acc & 0xffffffff;

      /* Calc upper part of acc */
      acc_h = (acc >> 32) & 0xffffffff;

      /* Apply shift for lower part of acc and upper part of acc */
      out = (uint32_t) acc_l >> lShift | acc_h << uShift;

      out = __SSAT(out, 16);

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) out;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /* #ifndef  ARM_MATH_BIG_ENDIAN */

    }

    /*  The first stage goes from the input wire to the output wire.  */
    /*  Subsequent numStages occur in-place in the output wire  */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the state array */
    *__SIMD32(pState)++ = state_in;
    *__SIMD32(pState)++ = state_out;


    /* Decrement the loop counter */
    stage--;

  } while (stage > 0U);

#else

  /* Run the below code for Cortex-M0 */

  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q15_t b0, b1, b2, a1, a2;                      /*  Filter coefficients           */
  q15_t Xn1, Xn2, Yn1, Yn2;                      /*  Filter state variables        */
  q15_t Xn;                                      /*  temporary input               */
  q63_t acc;                                     /*  Accumulator                                  */
  int32_t shift = (15 - (int32_t) S->postShift); /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  uint32_t sample, stage = (uint32_t) S->numStages;     /*  Stage loop counter                           */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    pCoeffs++;  // skip the 0 coefficient
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    /* Reading the state values */
    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    /*      The variables acc holds the output value that is computed:
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
     */

    sample = blockSize;

    while (sample > 0U)
    {
      /* Read the input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      /* acc =  b0 * x[n] */
      acc = (q31_t) b0 *Xn;

      /* acc +=  b1 * x[n-1] */
      acc += (q31_t) b1 *Xn1;
      /* acc +=  b[2] * x[n-2] */
      acc += (q31_t) b2 *Xn2;
      /* acc +=  a1 * y[n-1] */
      acc += (q31_t) a1 *Yn1;
      /* acc +=  a2 * y[n-2] */
      acc += (q31_t) a2 *Yn2;

      /* The result is converted to 1.31  */
      acc = __SSAT((acc >> shift), 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc    */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = (q15_t) acc;

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) acc;

      /* decrement the loop counter */
      sample--;
    }

    /*  The first stage goes from the input buffer to the output buffer. */
    /*  Subsequent stages occur in-place in the output buffer */
    pIn = pDst;

    /* Reset to destination pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the pState array */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

  } while (--stage);

#endif /* #if defined (ARM_MATH_DSP) */

}


/**
 * @} end of BiquadCascadeDF1 group
 */