summaryrefslogtreecommitdiff
path: root/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c
blob: 658e39535aabfd5315cbafd495b9c47293ef9475 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_biquad_cascade_df1_f32.c
 * Description:  Processing function for the floating-point Biquad cascade DirectFormI(DF1) filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure
 *
 * This set of functions implements arbitrary order recursive (IIR) filters.
 * The filters are implemented as a cascade of second order Biquad sections.
 * The functions support Q15, Q31 and floating-point data types.
 * Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3.
 *
 * The functions operate on blocks of input and output data and each call to the function
 * processes <code>blockSize</code> samples through the filter.
 * <code>pSrc</code> points to the array of input data and
 * <code>pDst</code> points to the array of output data.
 * Both arrays contain <code>blockSize</code> values.
 *
 * \par Algorithm
 * Each Biquad stage implements a second order filter using the difference equation:
 * <pre>
 *     y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
 * </pre>
 * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
 * \image html Biquad.gif "Single Biquad filter stage"
 * Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
 * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
 * Pay careful attention to the sign of the feedback coefficients.
 * Some design tools use the difference equation
 * <pre>
 *     y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
 * </pre>
 * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
 *
 * \par
 * Higher order filters are realized as a cascade of second order sections.
 * <code>numStages</code> refers to the number of second order stages used.
 * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
 * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
 * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
 *
 * \par
 * The <code>pState</code> points to state variables array.
 * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
 * The state variables are arranged in the <code>pState</code> array as:
 * <pre>
 *     {x[n-1], x[n-2], y[n-1], y[n-2]}
 * </pre>
 *
 * \par
 * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
 * The state array has a total length of <code>4*numStages</code> values.
 * The state variables are updated after each block of data is processed, the coefficients are untouched.
 *
 * \par Instance Structure
 * The coefficients and state variables for a filter are stored together in an instance data structure.
 * A separate instance structure must be defined for each filter.
 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
 * There are separate instance structure declarations for each of the 3 supported data types.
 *
 * \par Init Functions
 * There is also an associated initialization function for each data type.
 * The initialization function performs following operations:
 * - Sets the values of the internal structure fields.
 * - Zeros out the values in the state buffer.
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numStages, pCoeffs, pState. Also set all of the values in pState to zero.
 *
 * \par
 * Use of the initialization function is optional.
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
 * To place an instance structure into a const data section, the instance structure must be manually initialized.
 * Set the values in the state buffer to zeros before static initialization.
 * The code below statically initializes each of the 3 different data type filter instance structures
 * <pre>
 *     arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs};
 *     arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift};
 *     arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift};
 * </pre>
 * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied.
 *
 * \par Fixed-Point Behavior
 * Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions.
 * Following issues must be considered:
 * - Scaling of coefficients
 * - Filter gain
 * - Overflow and saturation
 *
 * \par
 * <b>Scaling of coefficients: </b>
 * Filter coefficients are represented as fractional values and
 * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
 * The fixed-point functions have an additional scaling parameter <code>postShift</code>
 * which allow the filter coefficients to exceed the range <code>[+1 -1)</code>.
 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
 * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
 * This essentially scales the filter coefficients by <code>2^postShift</code>.
 * For example, to realize the coefficients
 * <pre>
 *    {1.5, -0.8, 1.2, 1.6, -0.9}
 * </pre>
 * set the pCoeffs array to:
 * <pre>
 *    {0.75, -0.4, 0.6, 0.8, -0.45}
 * </pre>
 * and set <code>postShift=1</code>
 *
 * \par
 * <b>Filter gain: </b>
 * The frequency response of a Biquad filter is a function of its coefficients.
 * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
 * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
 * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
 *
 * \par
 * <b>Overflow and saturation: </b>
 * For Q15 and Q31 versions, it is described separately as part of the function specific documentation below.
 */

/**
 * @addtogroup BiquadCascadeDF1
 * @{
 */

/**
 * @param[in]  *S         points to an instance of the floating-point Biquad cascade structure.
 * @param[in]  *pSrc      points to the block of input data.
 * @param[out] *pDst      points to the block of output data.
 * @param[in]  blockSize  number of samples to process per call.
 * @return     none.
 *
 */

void arm_biquad_cascade_df1_f32(
  const arm_biquad_casd_df1_inst_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  uint32_t blockSize)
{
  float32_t *pIn = pSrc;                         /*  source pointer            */
  float32_t *pOut = pDst;                        /*  destination pointer       */
  float32_t *pState = S->pState;                 /*  pState pointer            */
  float32_t *pCoeffs = S->pCoeffs;               /*  coefficient pointer       */
  float32_t acc;                                 /*  Simulates the accumulator */
  float32_t b0, b1, b2, a1, a2;                  /*  Filter coefficients       */
  float32_t Xn1, Xn2, Yn1, Yn2;                  /*  Filter pState variables   */
  float32_t Xn;                                  /*  temporary input           */
  uint32_t sample, stage = S->numStages;         /*  loop counters             */


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    /* Reading the pState values */
    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    /* Apply loop unrolling and compute 4 output values simultaneously. */
    /*      The variable acc hold output values that are being computed:
     *
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1]   + a2 * y[n-2]
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1]   + a2 * y[n-2]
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1]   + a2 * y[n-2]
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1]   + a2 * y[n-2]
     */

    sample = blockSize >> 2U;

    /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
     ** a second loop below computes the remaining 1 to 3 samples. */
    while (sample > 0U)
    {
      /* Read the first input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn2;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /* Read the second input */
      Xn2 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn1;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /* Read the third input */
      Xn1 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn2;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as: */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /* Read the forth input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn1;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;

      /* decrement the loop counter */
      sample--;

    }

    /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
     ** No loop unrolling is used. */
    sample = blockSize & 0x3U;

    while (sample > 0U)
    {
      /* Read the input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = acc;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:    */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = acc;

      /* decrement the loop counter */
      sample--;

    }

    /*  Store the updated state variables back into the pState array */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

    /*  The first stage goes from the input buffer to the output buffer. */
    /*  Subsequent numStages  occur in-place in the output buffer */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /* decrement the loop counter */
    stage--;

  } while (stage > 0U);

#else

  /* Run the below code for Cortex-M0 */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    /* Reading the pState values */
    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    /*      The variables acc holds the output value that is computed:
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1]   + a2 * y[n-2]
     */

    sample = blockSize;

    while (sample > 0U)
    {
      /* Read the input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = acc;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:    */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = acc;

      /* decrement the loop counter */
      sample--;
    }

    /*  Store the updated state variables back into the pState array */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

    /*  The first stage goes from the input buffer to the output buffer. */
    /*  Subsequent numStages  occur in-place in the output buffer */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /* decrement the loop counter */
    stage--;

  } while (stage > 0U);

#endif /* #if defined (ARM_MATH_DSP) */

}


  /**
   * @} end of BiquadCascadeDF1 group
   */