summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_fast_q31.c
blob: bd9c686674a38ffdf1be3e073a8278e9492f1e91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_fast_q31.c
 * Description:  Processing function for the Q31 Fast FIR filter
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup FIR
 * @{
 */

/**
 * @param[in] *S points to an instance of the Q31 structure.
 * @param[in] *pSrc points to the block of input data.
 * @param[out] *pDst points to the block output data.
 * @param[in] blockSize number of samples to process per call.
 * @return none.
 *
 * <b>Scaling and Overflow Behavior:</b>
 *
 * \par
 * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
 * These intermediate results are added to a 2.30 accumulator.
 * Finally, the accumulator is saturated and converted to a 1.31 result.
 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
 *
 * \par
 * Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.  Both the slow and the fast versions use the same instance structure.
 * Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure.
 */

IAR_ONLY_LOW_OPTIMIZATION_ENTER
void arm_fir_fast_q31(
  const arm_fir_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t x0, x1, x2, x3;                          /* Temporary variables to hold state */
  q31_t c0;                                      /* Temporary variable to hold coefficient value */
  q31_t *px;                                     /* Temporary pointer for state */
  q31_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q31_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.
   * The variables acc0 ... acc3 hold output values that are being computed:
   *
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]
   */
  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
   ** a second loop below computes the remaining 1 to 3 samples. */
  while (blkCnt > 0U)
  {
    /* Copy four new input samples into the state buffer */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* Read the first three samples from the state buffer:
     *  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
    x0 = *(px++);
    x1 = *(px++);
    x2 = *(px++);

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;
    i = tapCnt;

    while (i > 0U)
    {
      /* Read the b[numTaps] coefficient */
      c0 = *pb;

      /* Read x[n-numTaps-3] sample */
      x3 = *px;

      /* acc0 +=  b[numTaps] * x[n-numTaps] */
      multAcc_32x32_keep32_R(acc0, x0, c0);

      /* acc1 +=  b[numTaps] * x[n-numTaps-1] */
      multAcc_32x32_keep32_R(acc1, x1, c0);

      /* acc2 +=  b[numTaps] * x[n-numTaps-2] */
      multAcc_32x32_keep32_R(acc2, x2, c0);

      /* acc3 +=  b[numTaps] * x[n-numTaps-3] */
      multAcc_32x32_keep32_R(acc3, x3, c0);

      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb + 1U);

      /* Read x[n-numTaps-4] sample */
      x0 = *(px + 1U);

      /* Perform the multiply-accumulates */
      multAcc_32x32_keep32_R(acc0, x1, c0);
      multAcc_32x32_keep32_R(acc1, x2, c0);
      multAcc_32x32_keep32_R(acc2, x3, c0);
      multAcc_32x32_keep32_R(acc3, x0, c0);

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb + 2U);

      /* Read x[n-numTaps-5] sample */
      x1 = *(px + 2U);

      /* Perform the multiply-accumulates */
      multAcc_32x32_keep32_R(acc0, x2, c0);
      multAcc_32x32_keep32_R(acc1, x3, c0);
      multAcc_32x32_keep32_R(acc2, x0, c0);
      multAcc_32x32_keep32_R(acc3, x1, c0);

      /* Read the b[numTaps-3] coefficients */
      c0 = *(pb + 3U);

      /* Read x[n-numTaps-6] sample */
      x2 = *(px + 3U);

      /* Perform the multiply-accumulates */
      multAcc_32x32_keep32_R(acc0, x3, c0);
      multAcc_32x32_keep32_R(acc1, x0, c0);
      multAcc_32x32_keep32_R(acc2, x1, c0);
      multAcc_32x32_keep32_R(acc3, x2, c0);

      /* update coefficient pointer */
      pb += 4U;
      px += 4U;

      /* Decrement the loop counter */
      i--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */

    i = numTaps - (tapCnt * 4U);
    while (i > 0U)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x3 = *(px++);

      /* Perform the multiply-accumulates */
      multAcc_32x32_keep32_R(acc0, x0, c0);
      multAcc_32x32_keep32_R(acc1, x1, c0);
      multAcc_32x32_keep32_R(acc2, x2, c0);
      multAcc_32x32_keep32_R(acc3, x3, c0);

      /* Reuse the present sample states for next sample */
      x0 = x1;
      x1 = x2;
      x2 = x3;

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.31
     ** Then store the 4 outputs in the destination buffer. */
    *pDst++ = (q31_t) (acc0 << 1);
    *pDst++ = (q31_t) (acc1 << 1);
    *pDst++ = (q31_t) (acc2 << 1);
    *pDst++ = (q31_t) (acc3 << 1);

    /* Decrement the samples loop counter */
    blkCnt--;
  }


  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
   ** No loop unrolling is used. */
  blkCnt = blockSize % 4U;

  while (blkCnt > 0U)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = (pCoeffs);

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++)));
      i--;
    } while (i > 0U);

    /* The result is in 2.30 format.  Convert to 1.31
     ** Then store the output in the destination buffer. */
    *pDst++ = (q31_t) (acc0 << 1);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the start of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1U);

  /* Copy the remaining q31_t data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }


}
IAR_ONLY_LOW_OPTIMIZATION_EXIT
/**
 * @} end of FIR group
 */