summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_dot_prod_q15.c
blob: efe72a255fea46388ff9c9b6794bf90f57fdd331 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_cmplx_dot_prod_q15.c
 * Description:  Processing function for the Q15 Complex Dot product
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupCmplxMath
 */

/**
 * @addtogroup cmplx_dot_prod
 * @{
 */

/**
 * @brief  Q15 complex dot product
 * @param  *pSrcA points to the first input vector
 * @param  *pSrcB points to the second input vector
 * @param  numSamples number of complex samples in each vector
 * @param  *realResult real part of the result returned here
 * @param  *imagResult imaginary part of the result returned here
 * @return none.
 *
 * <b>Scaling and Overflow Behavior:</b>
 * \par
 * The function is implemented using an internal 64-bit accumulator.
 * The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
 * These are accumulated in a 64-bit accumulator with 34.30 precision.
 * As a final step, the accumulators are converted to 8.24 format.
 * The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
 */

void arm_cmplx_dot_prod_q15(
  q15_t * pSrcA,
  q15_t * pSrcB,
  uint32_t numSamples,
  q31_t * realResult,
  q31_t * imagResult)
{
  q63_t real_sum = 0, imag_sum = 0;              /* Temporary result storage */
  q15_t a0,b0,c0,d0;

#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */
  uint32_t blkCnt;                               /* loop counter */


  /*loop Unrolling */
  blkCnt = numSamples >> 2U;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
   ** a second loop below computes the remaining 1 to 3 samples. */
  while (blkCnt > 0U)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += (q31_t)a0 * c0;
      imag_sum += (q31_t)a0 * d0;
      real_sum -= (q31_t)b0 * d0;
      imag_sum += (q31_t)b0 * c0;

      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += (q31_t)a0 * c0;
      imag_sum += (q31_t)a0 * d0;
      real_sum -= (q31_t)b0 * d0;
      imag_sum += (q31_t)b0 * c0;

      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += (q31_t)a0 * c0;
      imag_sum += (q31_t)a0 * d0;
      real_sum -= (q31_t)b0 * d0;
      imag_sum += (q31_t)b0 * c0;

      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += (q31_t)a0 * c0;
      imag_sum += (q31_t)a0 * d0;
      real_sum -= (q31_t)b0 * d0;
      imag_sum += (q31_t)b0 * c0;

      /* Decrement the loop counter */
      blkCnt--;
  }

  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
   ** No loop unrolling is used. */
  blkCnt = numSamples % 0x4U;

  while (blkCnt > 0U)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += (q31_t)a0 * c0;
      imag_sum += (q31_t)a0 * d0;
      real_sum -= (q31_t)b0 * d0;
      imag_sum += (q31_t)b0 * c0;

      /* Decrement the loop counter */
      blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while (numSamples > 0U)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;

      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;


      /* Decrement the loop counter */
      numSamples--;
  }

#endif /* #if defined (ARM_MATH_DSP) */

  /* Store the real and imaginary results in 8.24 format  */
  /* Convert real data in 34.30 to 8.24 by 6 right shifts */
  *realResult = (q31_t) (real_sum >> 6);
  /* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
  *imagResult = (q31_t) (imag_sum >> 6);
}

/**
 * @} end of cmplx_dot_prod group
 */