summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
blob: 9b2f53207bd590938a46a75c7c5e61aecba3ac05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_cmplx_mult_f32.c
 * Description:  Floating-point matrix multiplication
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupMatrix
 */

/**
 * @defgroup CmplxMatrixMult  Complex Matrix Multiplication
 *
 * Complex Matrix multiplication is only defined if the number of columns of the
 * first matrix equals the number of rows of the second matrix.
 * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
 * in an <code>M x P</code> matrix.
 * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
 * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
 * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
 */


/**
 * @addtogroup CmplxMatrixMult
 * @{
 */

/**
 * @brief Floating-point Complex matrix multiplication.
 * @param[in]       *pSrcA points to the first input complex matrix structure
 * @param[in]       *pSrcB points to the second input complex matrix structure
 * @param[out]      *pDst points to output complex matrix structure
 * @return     		The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 */

arm_status arm_mat_cmplx_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn1 = pSrcA->pData;                /* input data matrix pointer A */
  float32_t *pIn2 = pSrcB->pData;                /* input data matrix pointer B */
  float32_t *pInA = pSrcA->pData;                /* input data matrix pointer A  */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  float32_t *px;                                 /* Temporary output data matrix pointer */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  float32_t sumReal1, sumImag1;                  /* accumulator */
  float32_t a0, b0, c0, d0;
  float32_t a1, b1, c1, d1;
  float32_t sumReal2, sumImag2;                  /* accumulator */


  /* Run the below code for Cortex-M4 and Cortex-M3 */

  uint16_t col, i = 0U, j, row = numRowsA, colCnt;      /* loop counters */
  arm_status status;                             /* status of matrix multiplication */

#ifdef ARM_MATH_MATRIX_CHECK


  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {

    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + 2 * i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0U;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sumReal1 = 0.0f;
        sumImag1 = 0.0f;

        sumReal2 = 0.0f;
        sumImag2 = 0.0f;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pIn1 = pInA;

        /* Apply loop unrolling and compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2;

        /* matrix multiplication        */
        while (colCnt > 0U)
        {

          /* Reading real part of complex matrix A */
          a0 = *pIn1;

          /* Reading real part of complex matrix B */
          c0 = *pIn2;

          /* Reading imaginary part of complex matrix A */
          b0 = *(pIn1 + 1U);

          /* Reading imaginary part of complex matrix B */
          d0 = *(pIn2 + 1U);

          sumReal1 += a0 * c0;
          sumImag1 += b0 * c0;

          pIn1 += 2U;
          pIn2 += 2 * numColsB;

          sumReal2 -= b0 * d0;
          sumImag2 += a0 * d0;

          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */

          a1 = *pIn1;
          c1 = *pIn2;

          b1 = *(pIn1 + 1U);
          d1 = *(pIn2 + 1U);

          sumReal1 += a1 * c1;
          sumImag1 += b1 * c1;

          pIn1 += 2U;
          pIn2 += 2 * numColsB;

          sumReal2 -= b1 * d1;
          sumImag2 += a1 * d1;

          a0 = *pIn1;
          c0 = *pIn2;

          b0 = *(pIn1 + 1U);
          d0 = *(pIn2 + 1U);

          sumReal1 += a0 * c0;
          sumImag1 += b0 * c0;

          pIn1 += 2U;
          pIn2 += 2 * numColsB;

          sumReal2 -= b0 * d0;
          sumImag2 += a0 * d0;

          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */

          a1 = *pIn1;
          c1 = *pIn2;

          b1 = *(pIn1 + 1U);
          d1 = *(pIn2 + 1U);

          sumReal1 += a1 * c1;
          sumImag1 += b1 * c1;

          pIn1 += 2U;
          pIn2 += 2 * numColsB;

          sumReal2 -= b1 * d1;
          sumImag2 += a1 * d1;

          /* Decrement the loop count */
          colCnt--;
        }

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
         ** No loop unrolling is used. */
        colCnt = numColsA % 0x4U;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          a1 = *pIn1;
          c1 = *pIn2;

          b1 = *(pIn1 + 1U);
          d1 = *(pIn2 + 1U);

          sumReal1 += a1 * c1;
          sumImag1 += b1 * c1;

          pIn1 += 2U;
          pIn2 += 2 * numColsB;

          sumReal2 -= b1 * d1;
          sumImag2 += a1 * d1;

          /* Decrement the loop counter */
          colCnt--;
        }

        sumReal1 += sumReal2;
        sumImag1 += sumImag2;

        /* Store the result in the destination buffer */
        *px++ = sumReal1;
        *px++ = sumImag1;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + 2U * j;

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);

      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + 2 * numColsA;

      /* Decrement the row loop counter */
      row--;

    } while (row > 0U);

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}

/**
 * @} end of MatrixMult group
 */