summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_fir_example/arm_fir_example_f32.c
blob: 3dd9f5afb71687e18327ae10e0705e4a188879cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/* ----------------------------------------------------------------------
 * Copyright (C) 2010-2012 ARM Limited. All rights reserved.
 *
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
 * Title:        arm_fir_example_f32.c
 *
 * Description:  Example code demonstrating how an FIR filter can be used
 *               as a low pass filter.
 *
 * Target Processor: Cortex-M4/Cortex-M3
 *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
 * -------------------------------------------------------------------- */

/**
 * @ingroup groupExamples
 */

/**
 * @defgroup FIRLPF FIR Lowpass Filter Example
 *
 * \par Description:
 * \par
 * Removes high frequency signal components from the input using an FIR lowpass filter.
 * The example demonstrates how to configure an FIR filter and then pass data through
 * it in a block-by-block fashion.
 * \image html FIRLPF_signalflow.gif
 *
 * \par Algorithm:
 * \par
 * The input signal is a sum of two sine waves:  1 kHz and 15 kHz.
 * This is processed by an FIR lowpass filter with cutoff frequency 6 kHz.
 * The lowpass filter eliminates the 15 kHz signal leaving only the 1 kHz sine wave at the output.
 * \par
 * The lowpass filter was designed using MATLAB with a sample rate of 48 kHz and
 * a length of 29 points.
 * The MATLAB code to generate the filter coefficients is shown below:
 * <pre>
 *     h = fir1(28, 6/24);
 * </pre>
 * The first argument is the "order" of the filter and is always one less than the desired length.
 * The second argument is the normalized cutoff frequency.  This is in the range 0 (DC) to 1.0 (Nyquist).
 * A 6 kHz cutoff with a Nyquist frequency of 24 kHz lies at a normalized frequency of 6/24 = 0.25.
 * The CMSIS FIR filter function requires the coefficients to be in time reversed order.
 * <pre>
 *     fliplr(h)
 * </pre>
 * The resulting filter coefficients and are shown below.
 * Note that the filter is symmetric (a property of linear phase FIR filters)
 * and the point of symmetry is sample 14.  Thus the filter will have a delay of
 * 14 samples for all frequencies.
 * \par
 * \image html FIRLPF_coeffs.gif
 * \par
 * The frequency response of the filter is shown next.
 * The passband gain of the filter is 1.0 and it reaches 0.5 at the cutoff frequency 6 kHz.
 * \par
 * \image html FIRLPF_response.gif
 * \par
 * The input signal is shown below.
 * The left hand side shows the signal in the time domain while the right hand side is a frequency domain representation.
 * The two sine wave components can be clearly seen.
 * \par
 * \image html FIRLPF_input.gif
 * \par
 * The output of the filter is shown below.  The 15 kHz component has been eliminated.
 * \par
 * \image html FIRLPF_output.gif
 *
 * \par Variables Description:
 * \par
 * \li \c testInput_f32_1kHz_15kHz points to the input data
 * \li \c refOutput points to the reference output data
 * \li \c testOutput points to the test output data
 * \li \c firStateF32 points to state buffer
 * \li \c firCoeffs32 points to coefficient buffer
 * \li \c blockSize number of samples processed at a time
 * \li \c numBlocks number of frames
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_fir_init_f32()
 * - arm_fir_f32()
 *
 * <b> Refer  </b>
 * \link arm_fir_example_f32.c \endlink
 *
 */


/** \example arm_fir_example_f32.c
 */

/* ----------------------------------------------------------------------
** Include Files
** ------------------------------------------------------------------- */

#include "arm_math.h"
#include "math_helper.h"

/* ----------------------------------------------------------------------
** Macro Defines
** ------------------------------------------------------------------- */

#define TEST_LENGTH_SAMPLES  320
#define SNR_THRESHOLD_F32    140.0f
#define BLOCK_SIZE            32
#define NUM_TAPS              29

/* -------------------------------------------------------------------
 * The input signal and reference output (computed with MATLAB)
 * are defined externally in arm_fir_lpf_data.c.
 * ------------------------------------------------------------------- */

extern float32_t testInput_f32_1kHz_15kHz[TEST_LENGTH_SAMPLES];
extern float32_t refOutput[TEST_LENGTH_SAMPLES];

/* -------------------------------------------------------------------
 * Declare Test output buffer
 * ------------------------------------------------------------------- */

static float32_t testOutput[TEST_LENGTH_SAMPLES];

/* -------------------------------------------------------------------
 * Declare State buffer of size (numTaps + blockSize - 1)
 * ------------------------------------------------------------------- */

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1];

/* ----------------------------------------------------------------------
** FIR Coefficients buffer generated using fir1() MATLAB function.
** fir1(28, 6/24)
** ------------------------------------------------------------------- */

const float32_t firCoeffs32[NUM_TAPS] = {
  -0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.0000000000f, -0.0173976984f,
  -0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f, +0.2229246956f,
  +0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f,
  +0.0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f
};

/* ------------------------------------------------------------------
 * Global variables for FIR LPF Example
 * ------------------------------------------------------------------- */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;

float32_t  snr;

/* ----------------------------------------------------------------------
 * FIR LPF Example
 * ------------------------------------------------------------------- */

int32_t main(void)
{
  uint32_t i;
  arm_fir_instance_f32 S;
  arm_status status;
  float32_t  *inputF32, *outputF32;

  /* Initialize input and output buffer pointers */
  inputF32 = &testInput_f32_1kHz_15kHz[0];
  outputF32 = &testOutput[0];

  /* Call FIR init function to initialize the instance structure. */
  arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32[0], &firStateF32[0], blockSize);

  /* ----------------------------------------------------------------------
  ** Call the FIR process function for every blockSize samples
  ** ------------------------------------------------------------------- */

  for(i=0; i < numBlocks; i++)
  {
    arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
  }

  /* ----------------------------------------------------------------------
  ** Compare the generated output against the reference output computed
  ** in MATLAB.
  ** ------------------------------------------------------------------- */

  snr = arm_snr_f32(&refOutput[0], &testOutput[0], TEST_LENGTH_SAMPLES);

  if (snr < SNR_THRESHOLD_F32)
  {
    status = ARM_MATH_TEST_FAILURE;
  }
  else
  {
    status = ARM_MATH_SUCCESS;
  }

  /* ----------------------------------------------------------------------
  ** Loop here if the signal does not match the reference output.
  ** ------------------------------------------------------------------- */

  if ( status != ARM_MATH_SUCCESS)
  {
    while (1);
  }

  while (1);                             /* main function does not return */
}

/** \endlink */