summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c
blob: 2f1f23f594d9c536c715831ca3583fa5f3fba1e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
/**
  ******************************************************************************
  * @file    stm32f0xx_hal_irda.c
  * @author  MCD Application Team
  * @brief   IRDA HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the IrDA (Infrared Data Association) Peripheral
  *          (IRDA)
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral State and Errors functions
  *           + Peripheral Control functions
  *
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
  [..]
    The IRDA HAL driver can be used as follows:

    (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda).
    (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API
        in setting the associated USART or UART in IRDA mode:
        (++) Enable the USARTx/UARTx interface clock.
        (++) USARTx/UARTx pins configuration:
            (+++) Enable the clock for the USARTx/UARTx GPIOs.
            (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input).
        (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
             and HAL_IRDA_Receive_IT() APIs):
            (+++) Configure the USARTx/UARTx interrupt priority.
            (+++) Enable the NVIC USARTx/UARTx IRQ handle.
            (+++) The specific IRDA interrupts (Transmission complete interrupt,
                  RXNE interrupt and Error Interrupts) will be managed using the macros
                  __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.

        (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
             and HAL_IRDA_Receive_DMA() APIs):
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
            (+++) Enable the DMAx interface clock.
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
            (+++) Configure the DMA Tx/Rx channel.
            (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.

    (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
        the normal or low power mode and the clock prescaler in the hirda handle Init structure.

    (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
        (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
             by calling the customized HAL_IRDA_MspInit() API.

         -@@- The specific IRDA interrupts (Transmission complete interrupt,
             RXNE interrupt and Error Interrupts) will be managed using the macros
             __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.

    (#) Three operation modes are available within this driver :

     *** Polling mode IO operation ***
     =================================
     [..]
       (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit()
       (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()

     *** Interrupt mode IO operation ***
     ===================================
     [..]
       (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT()
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
       (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT()
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback()

     *** DMA mode IO operation ***
     ==============================
     [..]
       (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA()
       (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback()
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
       (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA()
       (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback()
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback()

     *** IRDA HAL driver macros list ***
     ====================================
     [..]
       Below the list of most used macros in IRDA HAL driver.

       (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral
       (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
       (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
       (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
       (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
       (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
       (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled

     [..]
       (@) You can refer to the IRDA HAL driver header file for more useful macros

    ##### Callback registration #####
    ==================================

    [..]
    The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1
    allows the user to configure dynamically the driver callbacks.

    [..]
    Use Function @ref HAL_IRDA_RegisterCallback() to register a user callback.
    Function @ref HAL_IRDA_RegisterCallback() allows to register following callbacks:
    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
    (+) TxCpltCallback            : Tx Complete Callback.
    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
    (+) RxCpltCallback            : Rx Complete Callback.
    (+) ErrorCallback             : Error Callback.
    (+) AbortCpltCallback         : Abort Complete Callback.
    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
    (+) MspInitCallback           : IRDA MspInit.
    (+) MspDeInitCallback         : IRDA MspDeInit.
    This function takes as parameters the HAL peripheral handle, the Callback ID
    and a pointer to the user callback function.

    [..]
    Use function @ref HAL_IRDA_UnRegisterCallback() to reset a callback to the default
    weak (surcharged) function.
    @ref HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
    and the Callback ID.
    This function allows to reset following callbacks:
    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
    (+) TxCpltCallback            : Tx Complete Callback.
    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
    (+) RxCpltCallback            : Rx Complete Callback.
    (+) ErrorCallback             : Error Callback.
    (+) AbortCpltCallback         : Abort Complete Callback.
    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
    (+) MspInitCallback           : IRDA MspInit.
    (+) MspDeInitCallback         : IRDA MspDeInit.

    [..]
    By default, after the @ref HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
    all callbacks are set to the corresponding weak (surcharged) functions:
    examples @ref HAL_IRDA_TxCpltCallback(), @ref HAL_IRDA_RxHalfCpltCallback().
    Exception done for MspInit and MspDeInit functions that are respectively
    reset to the legacy weak (surcharged) functions in the @ref HAL_IRDA_Init()
    and @ref HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
    If not, MspInit or MspDeInit are not null, the @ref HAL_IRDA_Init() and @ref HAL_IRDA_DeInit()
    keep and use the user MspInit/MspDeInit callbacks (registered beforehand).

    [..]
    Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only.
    Exception done MspInit/MspDeInit that can be registered/unregistered
    in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user)
    MspInit/DeInit callbacks can be used during the Init/DeInit.
    In that case first register the MspInit/MspDeInit user callbacks
    using @ref HAL_IRDA_RegisterCallback() before calling @ref HAL_IRDA_DeInit()
    or @ref HAL_IRDA_Init() function.

    [..]
    When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
    not defined, the callback registration feature is not available
    and weak (surcharged) callbacks are used.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"

#if defined(USART_IRDA_SUPPORT)
/** @addtogroup STM32F0xx_HAL_Driver
  * @{
  */

/** @defgroup IRDA IRDA
  * @brief HAL IRDA module driver
  * @{
  */

#ifdef HAL_IRDA_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup IRDA_Private_Constants IRDA Private Constants
  * @{
  */
#define IRDA_TEACK_REACK_TIMEOUT            1000U                                   /*!< IRDA TX or RX enable acknowledge time-out value  */

#define IRDA_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
                                     | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE))  /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */

#define USART_BRR_MIN    0x10U        /*!< USART BRR minimum authorized value */

#define USART_BRR_MAX    0x0000FFFFU  /*!< USART BRR maximum authorized value */
/**
  * @}
  */

/* Private macros ------------------------------------------------------------*/
/** @defgroup IRDA_Private_Macros IRDA Private Macros
  * @{
  */
/** @brief  BRR division operation to set BRR register in 16-bit oversampling mode.
  * @param  __PCLK__ IRDA clock source.
  * @param  __BAUD__ Baud rate set by the user.
  * @retval Division result
  */
#define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__)  (((__PCLK__) + ((__BAUD__)/2U)) / (__BAUD__))
/**
  * @}
  */

/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup IRDA_Private_Functions
  * @{
  */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
                                                     uint32_t Tickstart, uint32_t Timeout);
static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/

/** @defgroup IRDA_Exported_Functions IRDA Exported Functions
  * @{
  */

/** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions
  *  @brief    Initialization and Configuration functions
  *
@verbatim
  ==============================================================================
              ##### Initialization and Configuration functions #####
  ==============================================================================
  [..]
  This subsection provides a set of functions allowing to initialize the USARTx
  in asynchronous IRDA mode.
  (+) For the asynchronous mode only these parameters can be configured:
      (++) Baud Rate
      (++) Word Length
      (++) Parity: If the parity is enabled, then the MSB bit of the data written
           in the data register is transmitted but is changed by the parity bit.
      (++) Power mode
      (++) Prescaler setting
      (++) Receiver/transmitter modes

  [..]
  The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures
  (details for the procedures are available in reference manual).

@endverbatim

  Depending on the frame length defined either by the M bit (8-bits or 9-bits)
  or by the M1 and M0 bits (7-bit, 8-bit or 9-bit), the possible IRDA frame 
  formats are listed in the following table.

    Table 1. IRDA frame format.
    +-----------------------------------------------------------------------+
    |       M bit       |  PCE bit  |             IRDA frame                |
    |-------------------|-----------|---------------------------------------|
    |         0         |     0     |    | SB |    8-bit data   | STB |     |
    |-------------------|-----------|---------------------------------------|
    |         0         |     1     |    | SB | 7-bit data | PB | STB |     |
    |-------------------|-----------|---------------------------------------|
    |         1         |     0     |    | SB |    9-bit data   | STB |     |
    |-------------------|-----------|---------------------------------------|
    |         1         |     1     |    | SB | 8-bit data | PB | STB |     |
    +-----------------------------------------------------------------------+
    |  M1 bit |  M0 bit |  PCE bit  |             IRDA frame                |
    |---------|---------|-----------|---------------------------------------|
    |    0    |    0    |    0      |    | SB |    8 bit data   | STB |     |
    |---------|---------|-----------|---------------------------------------|
    |    0    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
    |---------|---------|-----------|---------------------------------------|
    |    0    |    1    |    0      |    | SB |    9 bit data   | STB |     |
    |---------|---------|-----------|---------------------------------------|
    |    0    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
    |---------|---------|-----------|---------------------------------------|
    |    1    |    0    |    0      |    | SB |    7 bit data   | STB |     |
    |---------|---------|-----------|---------------------------------------|
    |    1    |    0    |    1      |    | SB | 6 bit data | PB | STB |     |
    +-----------------------------------------------------------------------+

  * @{
  */

/**
  * @brief Initialize the IRDA mode according to the specified
  *        parameters in the IRDA_InitTypeDef and initialize the associated handle.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if (hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the USART/UART associated to the IRDA handle */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));

  if (hirda->gState == HAL_IRDA_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hirda->Lock = HAL_UNLOCKED;

#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
    IRDA_InitCallbacksToDefault(hirda);

    if (hirda->MspInitCallback == NULL)
    {
      hirda->MspInitCallback = HAL_IRDA_MspInit;
    }

    /* Init the low level hardware */
    hirda->MspInitCallback(hirda);
#else
    /* Init the low level hardware : GPIO, CLOCK */
    HAL_IRDA_MspInit(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  }

  hirda->gState = HAL_IRDA_STATE_BUSY;

  /* Disable the Peripheral to update the configuration registers */
  __HAL_IRDA_DISABLE(hirda);

  /* Set the IRDA Communication parameters */
  if (IRDA_SetConfig(hirda) == HAL_ERROR)
  {
    return HAL_ERROR;
  }

  /* In IRDA mode, the following bits must be kept cleared:
  - LINEN, STOP and CLKEN bits in the USART_CR2 register,
  - SCEN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
  CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));

  /* set the UART/USART in IRDA mode */
  hirda->Instance->CR3 |= USART_CR3_IREN;

  /* Enable the Peripheral */
  __HAL_IRDA_ENABLE(hirda);

  /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */
  return (IRDA_CheckIdleState(hirda));
}

/**
  * @brief DeInitialize the IRDA peripheral.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if (hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the USART/UART associated to the IRDA handle */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));

  hirda->gState = HAL_IRDA_STATE_BUSY;

  /* DeInit the low level hardware */
#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
  if (hirda->MspDeInitCallback == NULL)
  {
    hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
  }
  /* DeInit the low level hardware */
  hirda->MspDeInitCallback(hirda);
#else
  HAL_IRDA_MspDeInit(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  /* Disable the Peripheral */
  __HAL_IRDA_DISABLE(hirda);

  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  hirda->gState    = HAL_IRDA_STATE_RESET;
  hirda->RxState   = HAL_IRDA_STATE_RESET;

  /* Process Unlock */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief Initialize the IRDA MSP.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_MspInit can be implemented in the user file
   */
}

/**
  * @brief DeInitialize the IRDA MSP.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_MspDeInit can be implemented in the user file
   */
}

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User IRDA Callback
  *         To be used instead of the weak predefined callback
  * @param  hirda irda handle
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *           @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
  *           @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
  *           @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
  *           @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
  *           @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
  *           @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
  *           @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
  *           @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
  *           @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
  *           @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID,
                                            pIRDA_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;

  if (pCallback == NULL)
  {
    /* Update the error code */
    hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

    return HAL_ERROR;
  }
  /* Process locked */
  __HAL_LOCK(hirda);

  if (hirda->gState == HAL_IRDA_STATE_READY)
  {
    switch (CallbackID)
    {
      case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
        hirda->TxHalfCpltCallback = pCallback;
        break;

      case HAL_IRDA_TX_COMPLETE_CB_ID :
        hirda->TxCpltCallback = pCallback;
        break;

      case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
        hirda->RxHalfCpltCallback = pCallback;
        break;

      case HAL_IRDA_RX_COMPLETE_CB_ID :
        hirda->RxCpltCallback = pCallback;
        break;

      case HAL_IRDA_ERROR_CB_ID :
        hirda->ErrorCallback = pCallback;
        break;

      case HAL_IRDA_ABORT_COMPLETE_CB_ID :
        hirda->AbortCpltCallback = pCallback;
        break;

      case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
        hirda->AbortTransmitCpltCallback = pCallback;
        break;

      case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
        hirda->AbortReceiveCpltCallback = pCallback;
        break;

      case HAL_IRDA_MSPINIT_CB_ID :
        hirda->MspInitCallback = pCallback;
        break;

      case HAL_IRDA_MSPDEINIT_CB_ID :
        hirda->MspDeInitCallback = pCallback;
        break;

      default :
        /* Update the error code */
        hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if (hirda->gState == HAL_IRDA_STATE_RESET)
  {
    switch (CallbackID)
    {
      case HAL_IRDA_MSPINIT_CB_ID :
        hirda->MspInitCallback = pCallback;
        break;

      case HAL_IRDA_MSPDEINIT_CB_ID :
        hirda->MspDeInitCallback = pCallback;
        break;

      default :
        /* Update the error code */
        hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hirda);

  return status;
}

/**
  * @brief  Unregister an IRDA callback
  *         IRDA callback is redirected to the weak predefined callback
  * @param  hirda irda handle
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *           @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
  *           @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
  *           @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
  *           @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
  *           @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
  *           @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
  *           @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
  *           @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
  *           @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
  *           @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Process locked */
  __HAL_LOCK(hirda);

  if (HAL_IRDA_STATE_READY == hirda->gState)
  {
    switch (CallbackID)
    {
      case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
        hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback       */
        break;

      case HAL_IRDA_TX_COMPLETE_CB_ID :
        hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback;                       /* Legacy weak TxCpltCallback            */
        break;

      case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
        hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback        */
        break;

      case HAL_IRDA_RX_COMPLETE_CB_ID :
        hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback;                       /* Legacy weak RxCpltCallback            */
        break;

      case HAL_IRDA_ERROR_CB_ID :
        hirda->ErrorCallback = HAL_IRDA_ErrorCallback;                         /* Legacy weak ErrorCallback             */
        break;

      case HAL_IRDA_ABORT_COMPLETE_CB_ID :
        hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback         */
        break;

      case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
        hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
        break;

      case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
        hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback;   /* Legacy weak AbortReceiveCpltCallback  */
        break;

      case HAL_IRDA_MSPINIT_CB_ID :
        hirda->MspInitCallback = HAL_IRDA_MspInit;                             /* Legacy weak MspInitCallback           */
        break;

      case HAL_IRDA_MSPDEINIT_CB_ID :
        hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;                         /* Legacy weak MspDeInitCallback         */
        break;

      default :
        /* Update the error code */
        hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if (HAL_IRDA_STATE_RESET == hirda->gState)
  {
    switch (CallbackID)
    {
      case HAL_IRDA_MSPINIT_CB_ID :
        hirda->MspInitCallback = HAL_IRDA_MspInit;
        break;

      case HAL_IRDA_MSPDEINIT_CB_ID :
        hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
        break;

      default :
        /* Update the error code */
        hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;

    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hirda);

  return status;
}
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */

/**
  * @}
  */

/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions
  *  @brief   IRDA Transmit and Receive functions
  *
@verbatim
 ===============================================================================
                         ##### IO operation functions #####
 ===============================================================================
  [..]
    This subsection provides a set of functions allowing to manage the IRDA data transfers.

  [..]
    IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
    on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
    is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
    While receiving data, transmission should be avoided as the data to be transmitted
    could be corrupted.

  [..]
    (#) There are two modes of transfer:
        (++) Blocking mode: the communication is performed in polling mode.
             The HAL status of all data processing is returned by the same function
             after finishing transfer.
        (++) Non-Blocking mode: the communication is performed using Interrupts
             or DMA, these API's return the HAL status.
             The end of the data processing will be indicated through the
             dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when
             using DMA mode.
             The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks
             will be executed respectively at the end of the Transmit or Receive process
             The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected

    (#) Blocking mode APIs are :
        (++) HAL_IRDA_Transmit()
        (++) HAL_IRDA_Receive()

    (#) Non Blocking mode APIs with Interrupt are :
        (++) HAL_IRDA_Transmit_IT()
        (++) HAL_IRDA_Receive_IT()
        (++) HAL_IRDA_IRQHandler()

    (#) Non Blocking mode functions with DMA are :
        (++) HAL_IRDA_Transmit_DMA()
        (++) HAL_IRDA_Receive_DMA()
        (++) HAL_IRDA_DMAPause()
        (++) HAL_IRDA_DMAResume()
        (++) HAL_IRDA_DMAStop()

    (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
        (++) HAL_IRDA_TxHalfCpltCallback()
        (++) HAL_IRDA_TxCpltCallback()
        (++) HAL_IRDA_RxHalfCpltCallback()
        (++) HAL_IRDA_RxCpltCallback()
        (++) HAL_IRDA_ErrorCallback()

    (#) Non-Blocking mode transfers could be aborted using Abort API's :
        (++) HAL_IRDA_Abort()
        (++) HAL_IRDA_AbortTransmit()
        (++) HAL_IRDA_AbortReceive()
        (++) HAL_IRDA_Abort_IT()
        (++) HAL_IRDA_AbortTransmit_IT()
        (++) HAL_IRDA_AbortReceive_IT()

    (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
        (++) HAL_IRDA_AbortCpltCallback()
        (++) HAL_IRDA_AbortTransmitCpltCallback()
        (++) HAL_IRDA_AbortReceiveCpltCallback()

    (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
        Errors are handled as follows :
        (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
             to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
             Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
             and HAL_IRDA_ErrorCallback() user callback is executed. Transfer is kept ongoing on IRDA side.
             If user wants to abort it, Abort services should be called by user.
        (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
             This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
             Error code is set to allow user to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed.

@endverbatim
  * @{
  */

/**
  * @brief Send an amount of data in blocking mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @param pData Pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be sent.
  * @param Timeout Specify timeout value.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint8_t  *pdata8bits;
  uint16_t *pdata16bits;
  uint32_t tickstart;

  /* Check that a Tx process is not already ongoing */
  if (hirda->gState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data to be filled into TDR will be
       handled through a u16 cast. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Init tickstart for timeout managment*/
    tickstart = HAL_GetTick();

    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      pdata8bits  = NULL;
      pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
    }
    else
    {
      pdata8bits  = pData;
      pdata16bits = NULL;
    }

    while (hirda->TxXferCount > 0U)
    {
      hirda->TxXferCount--;

      if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
      {
        return HAL_TIMEOUT;
      }
      if (pdata8bits == NULL)
      {
        hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
        pdata16bits++;
      }
      else
      {
        hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
        pdata8bits++;
      }
    }

    if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }

    /* At end of Tx process, restore hirda->gState to Ready */
    hirda->gState = HAL_IRDA_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in blocking mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the received data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param pData Pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be received.
  * @param Timeout Specify timeout value.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint8_t  *pdata8bits;
  uint16_t *pdata16bits;
  uint16_t uhMask;
  uint32_t tickstart;

  /* Check that a Rx process is not already ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data to be received from RDR will be
       handled through a u16 cast. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;

    /* Init tickstart for timeout managment*/
    tickstart = HAL_GetTick();

    hirda->RxXferSize = Size;
    hirda->RxXferCount = Size;

    /* Computation of the mask to apply to RDR register
       of the UART associated to the IRDA */
    IRDA_MASK_COMPUTATION(hirda);
    uhMask = hirda->Mask;

    /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      pdata8bits  = NULL;
      pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
    }
    else
    {
      pdata8bits  = pData;
      pdata16bits = NULL;
    }

    /* Check data remaining to be received */
    while (hirda->RxXferCount > 0U)
    {
      hirda->RxXferCount--;

      if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
      {
        return HAL_TIMEOUT;
      }
      if (pdata8bits == NULL)
      {
        *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask);
        pdata16bits++;
      }
      else
      {
        *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask);
        pdata8bits++;
      }
    }

    /* At end of Rx process, restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Send an amount of data in interrupt mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param pData Pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be sent.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Tx process is not already ongoing */
  if (hirda->gState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data to be filled into TDR will be
       handled through a u16 cast. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the IRDA Transmit Data Register Empty Interrupt */
    SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in interrupt mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the received data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param pData Pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be received.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data to be received from RDR will be
       handled through a u16 cast. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;
    hirda->RxXferCount = Size;

    /* Computation of the mask to apply to the RDR register
       of the UART associated to the IRDA */
    IRDA_MASK_COMPUTATION(hirda);

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
    SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);

    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Send an amount of data in DMA mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @param pData pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be sent.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  *         (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Tx process is not already ongoing */
  if (hirda->gState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data copy into TDR will be
       handled by DMA from a u16 frontier. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;

    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;

    /* Set the DMA error callback */
    hirda->hdmatx->XferErrorCallback = IRDA_DMAError;

    /* Set the DMA abort callback */
    hirda->hdmatx->XferAbortCallback = NULL;

    /* Enable the IRDA transmit DMA channel */
    if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK)
    {
      /* Clear the TC flag in the ICR register */
      __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF);

      /* Process Unlocked */
      __HAL_UNLOCK(hirda);

      /* Enable the DMA transfer for transmit request by setting the DMAT bit
         in the USART CR3 register */
      SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

      return HAL_OK;
    }
    else
    {
      /* Set error code to DMA */
      hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

      /* Process Unlocked */
      __HAL_UNLOCK(hirda);

      /* Restore hirda->gState to ready */
      hirda->gState = HAL_IRDA_STATE_READY;

      return HAL_ERROR;
    }
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Receive an amount of data in DMA mode.
  * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *        the received data is handled as a set of u16. In this case, Size must reflect the number
  *        of u16 available through pData.
  * @note   When the IRDA parity is enabled (PCE = 1), the received data contains
  *         the parity bit (MSB position).
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @param pData Pointer to data buffer (u8 or u16 data elements).
  * @param Size Amount of data elements (u8 or u16) to be received.
  * @retval HAL status
  */
/**
  * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  *         (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  */
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter
       should be aligned on a u16 frontier, as data copy from RDR will be
       handled by DMA from a u16 frontier. */
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      if ((((uint32_t)pData) & 1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;

    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;

    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;

    /* Set the DMA error callback */
    hirda->hdmarx->XferErrorCallback = IRDA_DMAError;

    /* Set the DMA abort callback */
    hirda->hdmarx->XferAbortCallback = NULL;

    /* Enable the DMA channel */
    if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK)
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hirda);

      /* Enable the UART Parity Error Interrupt */
      SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);

      /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
      SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);

      /* Enable the DMA transfer for the receiver request by setting the DMAR bit
         in the USART CR3 register */
      SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

      return HAL_OK;
    }
    else
    {
      /* Set error code to DMA */
      hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

      /* Process Unlocked */
      __HAL_UNLOCK(hirda);

      /* Restore hirda->RxState to ready */
      hirda->RxState = HAL_IRDA_STATE_READY;

      return HAL_ERROR;
    }
  }
  else
  {
    return HAL_BUSY;
  }
}


/**
  * @brief Pause the DMA Transfer.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
{
  /* Process Locked */
  __HAL_LOCK(hirda);

  if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
    {
      /* Disable the IRDA DMA Tx request */
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
    }
  }
  if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
    {
      /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
      CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

      /* Disable the IRDA DMA Rx request */
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
    }
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief Resume the DMA Transfer.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
{
  /* Process Locked */
  __HAL_LOCK(hirda);

  if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    /* Enable the IRDA DMA Tx request */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  }
  if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    /* Clear the Overrun flag before resuming the Rx transfer*/
    __HAL_IRDA_CLEAR_OREFLAG(hirda);

    /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
    SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
    SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);

    /* Enable the IRDA DMA Rx request */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief Stop the DMA Transfer.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
{
  /* The Lock is not implemented on this API to allow the user application
     to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() /
     HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback:
     indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
     interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
     the stream and the corresponding call back is executed. */

  /* Stop IRDA DMA Tx request if ongoing */
  if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
    {
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

      /* Abort the IRDA DMA Tx channel */
      if (hirda->hdmatx != NULL)
      {
        if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
        {
          if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
          {
            /* Set error code to DMA */
            hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

            return HAL_TIMEOUT;
          }
        }
      }

      IRDA_EndTxTransfer(hirda);
    }
  }

  /* Stop IRDA DMA Rx request if ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
    {
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

      /* Abort the IRDA DMA Rx channel */
      if (hirda->hdmarx != NULL)
      {
        if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
        {
          if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
          {
            /* Set error code to DMA */
            hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

            return HAL_TIMEOUT;
          }
        }
      }

      IRDA_EndRxTransfer(hirda);
    }
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (blocking mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Tx and Rx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* Disable the IRDA DMA Tx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
    if (hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null.
         No call back execution at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = NULL;

      if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
      {
        if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
        {
          /* Set error code to DMA */
          hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

          return HAL_TIMEOUT;
        }
      }
    }
  }

  /* Disable the IRDA DMA Rx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
    if (hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null.
         No call back execution at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = NULL;

      if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
      {
        if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
        {
          /* Set error code to DMA */
          hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

          return HAL_TIMEOUT;
        }
      }
    }
  }

  /* Reset Tx and Rx transfer counters */
  hirda->TxXferCount = 0U;
  hirda->RxXferCount = 0U;

  /* Clear the Error flags in the ICR register */
  __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

  /* Restore hirda->gState and hirda->RxState to Ready */
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Reset Handle ErrorCode to No Error */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (blocking mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Tx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the IRDA DMA Tx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
    if (hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null.
         No call back execution at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = NULL;

      if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
      {
        if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
        {
          /* Set error code to DMA */
          hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

          return HAL_TIMEOUT;
        }
      }
    }
  }

  /* Reset Tx transfer counter */
  hirda->TxXferCount = 0U;

  /* Restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (blocking mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Rx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* Disable the IRDA DMA Rx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
    if (hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null.
         No call back execution at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = NULL;

      if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
      {
        if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
        {
          /* Set error code to DMA */
          hirda->ErrorCode = HAL_IRDA_ERROR_DMA;

          return HAL_TIMEOUT;
        }
      }
    }
  }

  /* Reset Rx transfer counter */
  hirda->RxXferCount = 0U;

  /* Clear the Error flags in the ICR register */
  __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

  /* Restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (Interrupt mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Tx and Rx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
{
  uint32_t abortcplt = 1U;

  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
     before any call to DMA Abort functions */
  /* DMA Tx Handle is valid */
  if (hirda->hdmatx != NULL)
  {
    /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
       Otherwise, set it to NULL */
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
    {
      hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
    }
    else
    {
      hirda->hdmatx->XferAbortCallback = NULL;
    }
  }
  /* DMA Rx Handle is valid */
  if (hirda->hdmarx != NULL)
  {
    /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
       Otherwise, set it to NULL */
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
    {
      hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
    }
    else
    {
      hirda->hdmarx->XferAbortCallback = NULL;
    }
  }

  /* Disable the IRDA DMA Tx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    /* Disable DMA Tx at UART level */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
    if (hirda->hdmatx != NULL)
    {
      /* IRDA Tx DMA Abort callback has already been initialised :
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA TX */
      if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
      {
        hirda->hdmatx->XferAbortCallback = NULL;
      }
      else
      {
        abortcplt = 0U;
      }
    }
  }

  /* Disable the IRDA DMA Rx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
    if (hirda->hdmarx != NULL)
    {
      /* IRDA Rx DMA Abort callback has already been initialised :
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA RX */
      if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
      {
        hirda->hdmarx->XferAbortCallback = NULL;
        abortcplt = 1U;
      }
      else
      {
        abortcplt = 0U;
      }
    }
  }

  /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
  if (abortcplt == 1U)
  {
    /* Reset Tx and Rx transfer counters */
    hirda->TxXferCount = 0U;
    hirda->RxXferCount = 0U;

    /* Reset errorCode */
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

    /* Clear the Error flags in the ICR register */
    __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

    /* Restore hirda->gState and hirda->RxState to Ready */
    hirda->gState  = HAL_IRDA_STATE_READY;
    hirda->RxState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
    /* Call registered Abort complete callback */
    hirda->AbortCpltCallback(hirda);
#else
    /* Call legacy weak Abort complete callback */
    HAL_IRDA_AbortCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (Interrupt mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Tx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the IRDA DMA Tx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
    if (hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback :
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;

      /* Abort DMA TX */
      if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
      {
        /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
        hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
      }
    }
    else
    {
      /* Reset Tx transfer counter */
      hirda->TxXferCount = 0U;

      /* Restore hirda->gState to Ready */
      hirda->gState = HAL_IRDA_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
      /* Call registered Abort Transmit Complete Callback */
      hirda->AbortTransmitCpltCallback(hirda);
#else
      /* Call legacy weak Abort Transmit Complete Callback */
      HAL_IRDA_AbortTransmitCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
    }
  }
  else
  {
    /* Reset Tx transfer counter */
    hirda->TxXferCount = 0U;

    /* Restore hirda->gState to Ready */
    hirda->gState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
    /* Call registered Abort Transmit Complete Callback */
    hirda->AbortTransmitCpltCallback(hirda);
#else
    /* Call legacy weak Abort Transmit Complete Callback */
    HAL_IRDA_AbortTransmitCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (Interrupt mode).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified UART module.
  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
  *         This procedure performs following operations :
  *           - Disable IRDA Interrupts (Rx)
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* Disable the IRDA DMA Rx request if enabled */
  if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
    if (hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback :
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;

      /* Abort DMA RX */
      if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
      {
        /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
        hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
      }
    }
    else
    {
      /* Reset Rx transfer counter */
      hirda->RxXferCount = 0U;

      /* Clear the Error flags in the ICR register */
      __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

      /* Restore hirda->RxState to Ready */
      hirda->RxState = HAL_IRDA_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
      /* Call registered Abort Receive Complete Callback */
      hirda->AbortReceiveCpltCallback(hirda);
#else
      /* Call legacy weak Abort Receive Complete Callback */
      HAL_IRDA_AbortReceiveCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
    }
  }
  else
  {
    /* Reset Rx transfer counter */
    hirda->RxXferCount = 0U;

    /* Clear the Error flags in the ICR register */
    __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

    /* Restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
    /* Call registered Abort Receive Complete Callback */
    hirda->AbortReceiveCpltCallback(hirda);
#else
    /* Call legacy weak Abort Receive Complete Callback */
    HAL_IRDA_AbortReceiveCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  }

  return HAL_OK;
}

/**
  * @brief Handle IRDA interrupt request.
  * @param hirda  Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
{
  uint32_t isrflags   = READ_REG(hirda->Instance->ISR);
  uint32_t cr1its     = READ_REG(hirda->Instance->CR1);
  uint32_t cr3its;
  uint32_t errorflags;
  uint32_t errorcode;

  /* If no error occurs */
  errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE));
  if (errorflags == 0U)
  {
    /* IRDA in mode Receiver ---------------------------------------------------*/
    if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
    {
      IRDA_Receive_IT(hirda);
      return;
    }
  }

  /* If some errors occur */
  cr3its = READ_REG(hirda->Instance->CR3);
  if ((errorflags != 0U)
      && (((cr3its & USART_CR3_EIE) != 0U)
          || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U)))
  {
    /* IRDA parity error interrupt occurred -------------------------------------*/
    if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
    {
      __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);

      hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
    }

    /* IRDA frame error interrupt occurred --------------------------------------*/
    if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
    {
      __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);

      hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
    }

    /* IRDA noise error interrupt occurred --------------------------------------*/
    if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
    {
      __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);

      hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
    }

    /* IRDA Over-Run interrupt occurred -----------------------------------------*/
    if (((isrflags & USART_ISR_ORE) != 0U) &&
        (((cr1its & USART_CR1_RXNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
    {
      __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);

      hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
    }

    /* Call IRDA Error Call back function if need be --------------------------*/
    if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
    {
      /* IRDA in mode Receiver ---------------------------------------------------*/
      if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
      {
        IRDA_Receive_IT(hirda);
      }

      /* If Overrun error occurs, or if any error occurs in DMA mode reception,
         consider error as blocking */
      errorcode = hirda->ErrorCode;
      if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ||
          ((errorcode & HAL_IRDA_ERROR_ORE) != 0U))
      {
        /* Blocking error : transfer is aborted
           Set the IRDA state ready to be able to start again the process,
           Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
        IRDA_EndRxTransfer(hirda);

        /* Disable the IRDA DMA Rx request if enabled */
        if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
        {
          CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

          /* Abort the IRDA DMA Rx channel */
          if (hirda->hdmarx != NULL)
          {
            /* Set the IRDA DMA Abort callback :
               will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
            hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;

            /* Abort DMA RX */
            if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
            {
              /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
              hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
            }
          }
          else
          {
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
            /* Call registered user error callback */
            hirda->ErrorCallback(hirda);
#else
            /* Call legacy weak user error callback */
            HAL_IRDA_ErrorCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
          }
        }
        else
        {
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
          /* Call registered user error callback */
          hirda->ErrorCallback(hirda);
#else
          /* Call legacy weak user error callback */
          HAL_IRDA_ErrorCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
        }
      }
      else
      {
        /* Non Blocking error : transfer could go on.
           Error is notified to user through user error callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
        /* Call registered user error callback */
        hirda->ErrorCallback(hirda);
#else
        /* Call legacy weak user error callback */
        HAL_IRDA_ErrorCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
        hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
      }
    }
    return;

  } /* End if some error occurs */

  /* IRDA in mode Transmitter ------------------------------------------------*/
  if (((isrflags & USART_ISR_TXE) != 0U) && ((cr1its & USART_CR1_TXEIE) != 0U))
  {
    IRDA_Transmit_IT(hirda);
    return;
  }

  /* IRDA in mode Transmitter (transmission end) -----------------------------*/
  if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
  {
    IRDA_EndTransmit_IT(hirda);
    return;
  }

}

/**
  * @brief  Tx Transfer completed callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_TxCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  Tx Half Transfer completed callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified USART module.
  * @retval None
  */
__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  Rx Transfer completed callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_RxCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  Rx Half Transfer complete callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA error callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_ErrorCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA Abort Complete callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA Abort Complete callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA Abort Receive Complete callback.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions
  *  @brief   IRDA State and Errors functions
  *
@verbatim
  ==============================================================================
            ##### Peripheral State and Error functions #####
  ==============================================================================
  [..]
    This subsection provides a set of functions allowing to return the State of IrDA
    communication process and also return Peripheral Errors occurred during communication process
     (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state
         of the IRDA peripheral handle.
     (+) HAL_IRDA_GetError() checks in run-time errors that could occur during
         communication.

@endverbatim
  * @{
  */

/**
  * @brief Return the IRDA handle state.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL state
  */
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
{
  /* Return IRDA handle state */
  uint32_t temp1;
  uint32_t temp2;
  temp1 = (uint32_t)hirda->gState;
  temp2 = (uint32_t)hirda->RxState;

  return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
}

/**
  * @brief Return the IRDA handle error code.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval IRDA Error Code
  */
uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
{
  return hirda->ErrorCode;
}

/**
  * @}
  */

/**
  * @}
  */

/** @defgroup IRDA_Private_Functions IRDA Private Functions
  * @{
  */

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
/**
  * @brief  Initialize the callbacks to their default values.
  * @param  hirda IRDA handle.
  * @retval none
  */
void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda)
{
  /* Init the IRDA Callback settings */
  hirda->TxHalfCpltCallback        = HAL_IRDA_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
  hirda->TxCpltCallback            = HAL_IRDA_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
  hirda->RxHalfCpltCallback        = HAL_IRDA_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
  hirda->RxCpltCallback            = HAL_IRDA_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
  hirda->ErrorCallback             = HAL_IRDA_ErrorCallback;             /* Legacy weak ErrorCallback             */
  hirda->AbortCpltCallback         = HAL_IRDA_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
  hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
  hirda->AbortReceiveCpltCallback  = HAL_IRDA_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */

}
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */

/**
  * @brief Configure the IRDA peripheral.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  uint32_t tmpreg;
  IRDA_ClockSourceTypeDef clocksource;
  HAL_StatusTypeDef ret = HAL_OK;
  uint32_t pclk;

  /* Check the communication parameters */
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
  assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
  assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));

  /*-------------------------- USART CR1 Configuration -----------------------*/
  /* Configure the IRDA Word Length, Parity and transfer Mode:
     Set the M bits according to hirda->Init.WordLength value
     Set PCE and PS bits according to hirda->Init.Parity value
     Set TE and RE bits according to hirda->Init.Mode value */
  tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;

  MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);

  /*-------------------------- USART CR3 Configuration -----------------------*/
  MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);


  /*-------------------------- USART GTPR Configuration ----------------------*/
  MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler);

  /*-------------------------- USART BRR Configuration -----------------------*/
  IRDA_GETCLOCKSOURCE(hirda, clocksource);
  tmpreg =   0U;
  switch (clocksource)
  {
    case IRDA_CLOCKSOURCE_PCLK1:
      pclk = HAL_RCC_GetPCLK1Freq();
      tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
      break;
    case IRDA_CLOCKSOURCE_HSI:
      tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate));
      break;
    case IRDA_CLOCKSOURCE_SYSCLK:
      pclk = HAL_RCC_GetSysClockFreq();
      tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
      break;
    case IRDA_CLOCKSOURCE_LSE:
      tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate));
      break;
    default:
      ret = HAL_ERROR;
      break;
  }

  /* USARTDIV must be greater than or equal to 0d16 */
  if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX))
  {
    hirda->Instance->BRR = tmpreg;
  }
  else
  {
    ret = HAL_ERROR;
  }

  return ret;
}

/**
  * @brief Check the IRDA Idle State.
  * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
{
  uint32_t tickstart;

  /* Initialize the IRDA ErrorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Init tickstart for timeout managment*/
  tickstart = HAL_GetTick();

  /* Check if the Transmitter is enabled */
  if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
  {
    /* Wait until TEACK flag is set */
    if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
    {
      /* Timeout occurred */
      return HAL_TIMEOUT;
    }
  }
  /* Check if the Receiver is enabled */
  if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
  {
    /* Wait until REACK flag is set */
    if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
    {
      /* Timeout occurred */
      return HAL_TIMEOUT;
    }
  }

  /* Initialize the IRDA state*/
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief  Handle IRDA Communication Timeout.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @param  Flag Specifies the IRDA flag to check.
  * @param  Status Flag status (SET or RESET)
  * @param  Tickstart Tick start value
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
                                                     uint32_t Tickstart, uint32_t Timeout)
{
  /* Wait until flag is set */
  while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
  {
    /* Check for the Timeout */
    if (Timeout != HAL_MAX_DELAY)
    {
      if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
      {
        /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
        CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
        CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

        hirda->gState  = HAL_IRDA_STATE_READY;
        hirda->RxState = HAL_IRDA_STATE_READY;

        /* Process Unlocked */
        __HAL_UNLOCK(hirda);
        return HAL_TIMEOUT;
      }
    }
  }
  return HAL_OK;
}


/**
  * @brief  End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* At end of Tx process, restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;
}


/**
  * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* At end of Rx process, restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;
}


/**
  * @brief  DMA IRDA transmit process complete callback.
  * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  *              the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  /* DMA Normal mode */
  if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
  {
    hirda->TxXferCount = 0U;

    /* Disable the DMA transfer for transmit request by resetting the DMAT bit
       in the IRDA CR3 register */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Enable the IRDA Transmit Complete Interrupt */
    SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
  }
  /* DMA Circular mode */
  else
  {
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
    /* Call registered Tx complete callback */
    hirda->TxCpltCallback(hirda);
#else
    /* Call legacy weak Tx complete callback */
    HAL_IRDA_TxCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  }

}

/**
  * @brief  DMA IRDA transmit process half complete callback.
  * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  *              the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Tx Half complete callback */
  hirda->TxHalfCpltCallback(hirda);
#else
  /* Call legacy weak Tx complete callback */
  HAL_IRDA_TxHalfCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  DMA IRDA receive process complete callback.
  * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  *               the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  /* DMA Normal mode */
  if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
  {
    hirda->RxXferCount = 0U;

    /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
    CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

    /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
       in the IRDA CR3 register */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* At end of Rx process, restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;
  }

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Rx complete callback */
  hirda->RxCpltCallback(hirda);
#else
  /* Call legacy weak Rx complete callback */
  HAL_IRDA_RxCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
}

/**
  * @brief DMA IRDA receive process half complete callback.
  * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
  *              the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /*Call registered Rx Half complete callback*/
  hirda->RxHalfCpltCallback(hirda);
#else
  /* Call legacy weak Rx Half complete callback */
  HAL_IRDA_RxHalfCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief DMA IRDA communication error callback.
  * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
  *              the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  /* Stop IRDA DMA Tx request if ongoing */
  if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
    {
      hirda->TxXferCount = 0U;
      IRDA_EndTxTransfer(hirda);
    }
  }

  /* Stop IRDA DMA Rx request if ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
    {
      hirda->RxXferCount = 0U;
      IRDA_EndRxTransfer(hirda);
    }
  }

  hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered user error callback */
  hirda->ErrorCallback(hirda);
#else
  /* Call legacy weak user error callback */
  HAL_IRDA_ErrorCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  DMA IRDA communication abort callback, when initiated by HAL services on Error
  *         (To be called at end of DMA Abort procedure following error occurrence).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  hirda->RxXferCount = 0U;
  hirda->TxXferCount = 0U;

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered user error callback */
  hirda->ErrorCallback(hirda);
#else
  /* Call legacy weak user error callback */
  HAL_IRDA_ErrorCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  DMA IRDA Tx communication abort callback, when initiated by user
  *         (To be called at end of DMA Tx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Rx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  hirda->hdmatx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if (hirda->hdmarx != NULL)
  {
    if (hirda->hdmarx->XferAbortCallback != NULL)
    {
      return;
    }
  }

  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  hirda->TxXferCount = 0U;
  hirda->RxXferCount = 0U;

  /* Reset errorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Clear the Error flags in the ICR register */
  __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

  /* Restore hirda->gState and hirda->RxState to Ready */
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Abort complete callback */
  hirda->AbortCpltCallback(hirda);
#else
  /* Call legacy weak Abort complete callback */
  HAL_IRDA_AbortCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}


/**
  * @brief  DMA IRDA Rx communication abort callback, when initiated by user
  *         (To be called at end of DMA Rx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Tx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  hirda->hdmarx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if (hirda->hdmatx != NULL)
  {
    if (hirda->hdmatx->XferAbortCallback != NULL)
    {
      return;
    }
  }

  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  hirda->TxXferCount = 0U;
  hirda->RxXferCount = 0U;

  /* Reset errorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Clear the Error flags in the ICR register */
  __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

  /* Restore hirda->gState and hirda->RxState to Ready */
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Abort complete callback */
  hirda->AbortCpltCallback(hirda);
#else
  /* Call legacy weak Abort complete callback */
  HAL_IRDA_AbortCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}


/**
  * @brief  DMA IRDA Tx communication abort callback, when initiated by user by a call to
  *         HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
  *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
  *         and leads to user Tx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);

  hirda->TxXferCount = 0U;

  /* Restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Abort Transmit Complete Callback */
  hirda->AbortTransmitCpltCallback(hirda);
#else
  /* Call legacy weak Abort Transmit Complete Callback */
  HAL_IRDA_AbortTransmitCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  DMA IRDA Rx communication abort callback, when initiated by user by a call to
  *         HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
  *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
  *         and leads to user Rx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  hirda->RxXferCount = 0U;

  /* Clear the Error flags in the ICR register */
  __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);

  /* Restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Abort Receive Complete Callback */
  hirda->AbortReceiveCpltCallback(hirda);
#else
  /* Call legacy weak Abort Receive Complete Callback */
  HAL_IRDA_AbortReceiveCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  Send an amount of data in interrupt mode.
  * @note   Function is called under interruption only, once
  *         interruptions have been enabled by HAL_IRDA_Transmit_IT().
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t *tmp;

  /* Check that a Tx process is ongoing */
  if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    if (hirda->TxXferCount == 0U)
    {
      /* Disable the IRDA Transmit Data Register Empty Interrupt */
      CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);

      /* Enable the IRDA Transmit Complete Interrupt */
      SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
    }
    else
    {
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
      {
        tmp = (uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */
        hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
        hirda->pTxBuffPtr += 2U;
      }
      else
      {
        hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU);
        hirda->pTxBuffPtr++;
      }
      hirda->TxXferCount--;
    }
  }
}

/**
  * @brief  Wrap up transmission in non-blocking mode.
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable the IRDA Transmit Complete Interrupt */
  CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);

  /* Tx process is ended, restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  /* Call registered Tx complete callback */
  hirda->TxCpltCallback(hirda);
#else
  /* Call legacy weak Tx complete callback */
  HAL_IRDA_TxCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
}

/**
  * @brief  Receive an amount of data in interrupt mode.
  * @note   Function is called under interruption only, once
  *         interruptions have been enabled by HAL_IRDA_Receive_IT()
  * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  *               the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t *tmp;
  uint16_t  uhMask = hirda->Mask;
  uint16_t  uhdata;

  /* Check that a Rx process is ongoing */
  if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    uhdata = (uint16_t) READ_REG(hirda->Instance->RDR);
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */
      *tmp = (uint16_t)(uhdata & uhMask);
      hirda->pRxBuffPtr  += 2U;
    }
    else
    {
      *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
      hirda->pRxBuffPtr++;
    }

    hirda->RxXferCount--;
    if (hirda->RxXferCount == 0U)
    {
      /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */
      CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));

      /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
      CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

      /* Rx process is completed, restore hirda->RxState to Ready */
      hirda->RxState = HAL_IRDA_STATE_READY;

#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
      /* Call registered Rx complete callback */
      hirda->RxCpltCallback(hirda);
#else
      /* Call legacy weak Rx complete callback */
      HAL_IRDA_RxCpltCallback(hirda);
#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
    }
  }
  else
  {
    /* Clear RXNE interrupt flag */
    __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
  }
}

/**
  * @}
  */

#endif /* HAL_IRDA_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */
#endif /* USART_IRDA_SUPPORT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/