summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c
blob: c3824175cf59ec13f7f4880d24c4442321591f42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
/**
  ******************************************************************************
  * @file    stm32f0xx_hal_adc.c
  * @author  MCD Application Team
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Analog to Digital Convertor (ADC)
  *          peripheral:
  *           + Initialization and de-initialization functions
  *             ++ Initialization and Configuration of ADC
  *           + Operation functions
  *             ++ Start, stop, get result of conversions of regular
  *                group, using 3 possible modes: polling, interruption or DMA.
  *           + Control functions
  *             ++ Channels configuration on regular group
  *             ++ Analog Watchdog configuration
  *           + State functions
  *             ++ ADC state machine management
  *             ++ Interrupts and flags management
  *          Other functions (extended functions) are available in file 
  *          "stm32f0xx_hal_adc_ex.c".
  *
  @verbatim
  ==============================================================================
                     ##### ADC peripheral features #####
  ==============================================================================
  [..]
  (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution

  (+) Interrupt generation at the end of regular conversion and in case of 
      analog watchdog or overrun events.
  
  (+) Single and continuous conversion modes.
  
  (+) Scan mode for conversion of several channels sequentially.
  
  (+) Data alignment with in-built data coherency.
  
  (+) Programmable sampling time (common for all channels)
  
  (+) ADC conversion of regular group.

  (+) External trigger (timer or EXTI) with configurable polarity

  (+) DMA request generation for transfer of conversions data of regular group.

  (+) ADC calibration
  
  (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
      slower speed.
  
  (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to 
      Vdda or to an external voltage reference).


                     ##### How to use this driver #####
  ==============================================================================
    [..]

     *** Configuration of top level parameters related to ADC ***
     ============================================================
     [..]

    (#) Enable the ADC interface
      (++) As prerequisite, ADC clock must be configured at RCC top level.
           Caution: On STM32F0, ADC clock frequency max is 14MHz (refer
                    to device datasheet).
                    Therefore, ADC clock prescaler must be configured in 
                    function of ADC clock source frequency to remain below
                    this maximum frequency.

        (++) Two clock settings are mandatory: 
             (+++) ADC clock (core clock, also possibly conversion clock).

             (+++) ADC clock (conversions clock).
                   Two possible clock sources: synchronous clock derived from APB clock
                   or asynchronous clock derived from ADC dedicated HSI RC oscillator
                   14MHz.
                   If asynchronous clock is selected, parameter "HSI14State" must be set either:
                   - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control 
                     the HSI14 oscillator enable/disable (if not used to supply the main 
                     system clock): feature used if ADC mode LowPowerAutoPowerOff is 
                     enabled.
                   - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator
                     always enabled: can be used to supply the main system clock.

             (+++) Example:
                   Into HAL_ADC_MspInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) __HAL_RCC_ADC1_CLK_ENABLE();                         (mandatory)

               HI14 enable or let under control of ADC:           (optional: if asynchronous clock selected)
               (+++) RCC_OscInitTypeDef   RCC_OscInitStructure;
               (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
               (+++) RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT;
               (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL;
               (+++) RCC_OscInitStructure.PLL...   (optional if used for system clock)
               (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);

        (++) ADC clock source and clock prescaler are configured at ADC level with
             parameter "ClockPrescaler" using function HAL_ADC_Init().

    (#) ADC pins configuration
         (++) Enable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_ENABLE()
         (++) Configure these ADC pins in analog mode
              using function HAL_GPIO_Init()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Configure the NVIC for ADC
              using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() 
              into the function of corresponding ADC interruption vector 
              ADCx_IRQHandler().

    (#) Optionally, in case of usage of DMA:
         (++) Configure the DMA (DMA channel, mode normal or circular, ...)
              using function HAL_DMA_Init().
         (++) Configure the NVIC for DMA
              using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() 
              into the function of corresponding DMA interruption vector 
              DMAx_Channelx_IRQHandler().
  
     *** Configuration of ADC, group regular, channels parameters ***
     ================================================================
     [..]

    (#) Configure the ADC parameters (resolution, data alignment, ...)
        and regular group parameters (conversion trigger, sequencer, ...)
        using function HAL_ADC_Init().

    (#) Configure the channels for regular group parameters (channel number, 
        channel rank into sequencer, ..., into regular group)
        using function HAL_ADC_ConfigChannel().

    (#) Optionally, configure the analog watchdog parameters (channels
        monitored, thresholds, ...)
        using function HAL_ADC_AnalogWDGConfig().

     *** Execution of ADC conversions ***
     ====================================
     [..]

    (#) Optionally, perform an automatic ADC calibration to improve the
        conversion accuracy
        using function HAL_ADCEx_Calibration_Start().

    (#) ADC driver can be used among three modes: polling, interruption,
        transfer by DMA.

        (++) ADC conversion by polling:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start()
          (+++) Wait for ADC conversion completion 
                using function HAL_ADC_PollForConversion()
          (+++) Retrieve conversion results 
                using function HAL_ADC_GetValue()
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop()

        (++) ADC conversion by interruption: 
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_IT()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback()
                (this function must be implemented in user program)
          (+++) Retrieve conversion results 
                using function HAL_ADC_GetValue()
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop_IT()

        (++) ADC conversion with transfer by DMA:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_DMA()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
                (these functions must be implemented in user program)
          (+++) Conversion results are automatically transferred by DMA into
                destination variable address.
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop_DMA()

     [..]

    (@) Callback functions must be implemented in user program:
      (+@) HAL_ADC_ErrorCallback()
      (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
      (+@) HAL_ADC_ConvCpltCallback()
      (+@) HAL_ADC_ConvHalfCpltCallback

     *** Deinitialization of ADC ***
     ============================================================
     [..]

    (#) Disable the ADC interface
      (++) ADC clock can be hard reset and disabled at RCC top level.
        (++) Hard reset of ADC peripherals
             using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET().
        (++) ADC clock disable
             using the equivalent macro/functions as configuration step.
             (+++) Example:
                   Into HAL_ADC_MspDeInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
               (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock)
               (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);

    (#) ADC pins configuration
         (++) Disable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_DISABLE()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Disable the NVIC for ADC
              using function HAL_NVIC_DisableIRQ(ADCx_IRQn)

    (#) Optionally, in case of usage of DMA:
         (++) Deinitialize the DMA
              using function HAL_DMA_DeInit().
         (++) Disable the NVIC for DMA
              using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn)

    [..]

    *** Callback registration ***
    =============================================
    [..]

     The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
     allows the user to configure dynamically the driver callbacks.
     Use Functions @ref HAL_ADC_RegisterCallback()
     to register an interrupt callback.
    [..]

     Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks:
       (+) ConvCpltCallback               : ADC conversion complete callback
       (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
       (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
       (+) ErrorCallback                  : ADC error callback
       (+) MspInitCallback                : ADC Msp Init callback
       (+) MspDeInitCallback              : ADC Msp DeInit callback
     This function takes as parameters the HAL peripheral handle, the Callback ID
     and a pointer to the user callback function.
    [..]

     Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default
     weak function.
    [..]

     @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
     and the Callback ID.
     This function allows to reset following callbacks:
       (+) ConvCpltCallback               : ADC conversion complete callback
       (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
       (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
       (+) ErrorCallback                  : ADC error callback
       (+) MspInitCallback                : ADC Msp Init callback
       (+) MspDeInitCallback              : ADC Msp DeInit callback
     [..]

     By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET
     all callbacks are set to the corresponding weak functions:
     examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback().
     Exception done for MspInit and MspDeInit functions that are
     reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when
     these callbacks are null (not registered beforehand).
    [..]

     If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit()
     keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
     [..]

     Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only.
     Exception done MspInit/MspDeInit functions that can be registered/unregistered
     in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state,
     thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
    [..]

     Then, the user first registers the MspInit/MspDeInit user callbacks
     using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit()
     or @ref HAL_ADC_Init() function.
     [..]

     When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
     not defined, the callback registration feature is not available and all callbacks
     are set to the corresponding weak functions.
  
    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"

/** @addtogroup STM32F0xx_HAL_Driver
  * @{
  */

/** @defgroup ADC ADC
  * @brief ADC HAL module driver
  * @{
  */

#ifdef HAL_ADC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADC_Private_Constants ADC Private Constants
  * @{
  */

  /* Fixed timeout values for ADC calibration, enable settling time, disable  */
  /* settling time.                                                           */
  /* Values defined to be higher than worst cases: low clock frequency,       */
  /* maximum prescaler.                                                       */
  /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock         */
  /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits.     */
  /* Unit: ms                                                                 */
  #define ADC_ENABLE_TIMEOUT             ( 2U)
  #define ADC_DISABLE_TIMEOUT            ( 2U)
  #define ADC_STOP_CONVERSION_TIMEOUT    ( 2U)

  /* Delay for ADC stabilization time.                                        */
  /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB).       */
  /* Unit: us                                                                 */
  #define ADC_STAB_DELAY_US               ( 1U)

  /* Delay for temperature sensor stabilization time.                         */
  /* Maximum delay is 10us (refer to device datasheet, parameter tSTART).     */
  /* Unit: us                                                                 */
  #define ADC_TEMPSENSOR_DELAY_US         ( 10U)

/**
    * @}
    */
  
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup ADC_Private_Functions ADC Private Functions
  * @{
  */
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc);
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc);
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc);
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
/**
    * @}
    */

/* Exported functions ---------------------------------------------------------*/

/** @defgroup ADC_Exported_Functions ADC Exported Functions
  * @{
  */

/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions 
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize and configure the ADC. 
      (+) De-initialize the ADC
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the ADC peripheral and regular group according to  
  *         parameters specified in structure "ADC_InitTypeDef".
  * @note   As prerequisite, ADC clock must be configured at RCC top level
  *         depending on both possible clock sources: APB clock of HSI clock.
  *         See commented example code below that can be copied and uncommented 
  *         into HAL_ADC_MspInit().
  * @note   Possibility to update parameters on the fly:
  *         This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
  *         coming from ADC state reset. Following calls to this function can
  *         be used to reconfigure some parameters of ADC_InitTypeDef  
  *         structure on the fly, without modifying MSP configuration. If ADC  
  *         MSP has to be modified again, HAL_ADC_DeInit() must be called
  *         before HAL_ADC_Init().
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure 
  *         "ADC_InitTypeDef".
  * @note   This function configures the ADC within 2 scopes: scope of entire 
  *         ADC and scope of regular group. For parameters details, see comments 
  *         of structure "ADC_InitTypeDef".
  * @param  hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tmpCFGR1 = 0U;

  /* Check ADC handle */
  if(hadc == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); 
  assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
  assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));   
  assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));   
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
  assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff));
  
  /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured    */
  /* at RCC top level depending on both possible clock sources:               */
  /* APB clock or HSI clock.                                                  */
  /* Refer to header of this file for more details on clock enabling procedure*/
  
  /* Actions performed only if ADC is coming from state reset:                */
  /* - Initialization of ADC MSP                                              */
  /* - ADC voltage regulator enable                                           */
  if (hadc->State == HAL_ADC_STATE_RESET)
  {
    /* Initialize ADC error code */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Allocate lock resource and initialize it */
    hadc->Lock = HAL_UNLOCKED;
    
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    /* Init the ADC Callback settings */
    hadc->ConvCpltCallback              = HAL_ADC_ConvCpltCallback;                 /* Legacy weak callback */
    hadc->ConvHalfCpltCallback          = HAL_ADC_ConvHalfCpltCallback;             /* Legacy weak callback */
    hadc->LevelOutOfWindowCallback      = HAL_ADC_LevelOutOfWindowCallback;         /* Legacy weak callback */
    hadc->ErrorCallback                 = HAL_ADC_ErrorCallback;                    /* Legacy weak callback */
    
    if (hadc->MspInitCallback == NULL)
    {
      hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit  */
    }
    
    /* Init the low level hardware */
    hadc->MspInitCallback(hadc);
#else
    /* Init the low level hardware */
    HAL_ADC_MspInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
  }
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  /* and if there is no conversion on going on regular group (ADC can be      */ 
  /* enabled anyway, in case of call of this function to update a parameter   */
  /* on the fly).                                                             */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
      (tmp_hal_status == HAL_OK)                                &&
      (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)          )
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY,
                      HAL_ADC_STATE_BUSY_INTERNAL);
    
    /* Parameters update conditioned to ADC state:                            */
    /* Parameters that can be updated only when ADC is disabled:              */
    /*  - ADC clock mode                                                      */
    /*  - ADC clock prescaler                                                 */
    /*  - ADC resolution                                                      */
    if (ADC_IS_ENABLE(hadc) == RESET)
    {
      /* Some parameters of this register are not reset, since they are set   */
      /* by other functions and must be kept in case of usage of this         */
      /* function on the fly (update of a parameter of ADC_InitTypeDef        */
      /* without needing to reconfigure all other ADC groups/channels         */
      /* parameters):                                                         */
      /*   - internal measurement paths: Vbat, temperature sensor, Vref       */
      /*     (set into HAL_ADC_ConfigChannel() )                              */
     
      /* Configuration of ADC resolution                                      */
      MODIFY_REG(hadc->Instance->CFGR1,
                 ADC_CFGR1_RES        ,
                 hadc->Init.Resolution );
      
      /* Configuration of ADC clock mode: clock source AHB or HSI with        */
      /* selectable prescaler                                                 */
      MODIFY_REG(hadc->Instance->CFGR2    ,
                 ADC_CFGR2_CKMODE         ,
                 hadc->Init.ClockPrescaler );
    }
      
    /* Configuration of ADC:                                                  */
    /*  - discontinuous mode                                                  */
    /*  - LowPowerAutoWait mode                                               */
    /*  - LowPowerAutoPowerOff mode                                           */
    /*  - continuous conversion mode                                          */
    /*  - overrun                                                             */
    /*  - external trigger to start conversion                                */
    /*  - external trigger polarity                                           */
    /*  - data alignment                                                      */
    /*  - resolution                                                          */
    /*  - scan direction                                                      */
    /*  - DMA continuous request                                              */
    hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN  |
                                ADC_CFGR1_AUTOFF  |
                                ADC_CFGR1_AUTDLY  |
                                ADC_CFGR1_CONT    |
                                ADC_CFGR1_OVRMOD  |
                                ADC_CFGR1_EXTSEL  |
                                ADC_CFGR1_EXTEN   |
                                ADC_CFGR1_ALIGN   |
                                ADC_CFGR1_SCANDIR |
                                ADC_CFGR1_DMACFG   );

    tmpCFGR1 |= (ADC_CFGR1_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait)        |
                 ADC_CFGR1_AUTOOFF((uint32_t)hadc->Init.LowPowerAutoPowerOff)     |
                 ADC_CFGR1_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)    |
                 ADC_CFGR1_OVERRUN(hadc->Init.Overrun)                            |
                 hadc->Init.DataAlign                                             |
                 ADC_SCANDIR(hadc->Init.ScanConvMode)                             |
                 ADC_CFGR1_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests)  );
    
    /* Enable discontinuous mode only if continuous mode is disabled */
    if (hadc->Init.DiscontinuousConvMode == ENABLE)
    {
      if (hadc->Init.ContinuousConvMode == DISABLE)
      {
        /* Enable the selected ADC group regular discontinuous mode */
        tmpCFGR1 |= ADC_CFGR1_DISCEN;
      }
      else
      {
        /* ADC regular group discontinuous was intended to be enabled,        */
        /* but ADC regular group modes continuous and sequencer discontinuous */
        /* cannot be enabled simultaneously.                                  */
        
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
        
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      }
    }
    
    /* Enable external trigger if trigger selection is different of software  */
    /* start.                                                                 */
    /* Note: This configuration keeps the hardware feature of parameter       */
    /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
    /*       software start.                                                  */
    if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
    {
      tmpCFGR1 |= ( hadc->Init.ExternalTrigConv    |
                    hadc->Init.ExternalTrigConvEdge );
    }
    
    /* Update ADC configuration register with previous settings */
    hadc->Instance->CFGR1 |= tmpCFGR1;
    
    /* Channel sampling time configuration */
    /* Management of parameters "SamplingTimeCommon" and "SamplingTime"       */
    /* (obsolete): sampling time set in this function if parameter            */
    /*  "SamplingTimeCommon" has been set to a valid sampling time.           */
    /* Otherwise, sampling time is set into ADC channel initialization        */
    /* structure with parameter "SamplingTime" (obsolete).                    */
    if (IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
    {
      /* Channel sampling time configuration */
      /* Clear the old sample time */
      hadc->Instance->SMPR &= ~(ADC_SMPR_SMP);
      
      /* Set the new sample time */
      hadc->Instance->SMPR |= ADC_SMPR_SET(hadc->Init.SamplingTimeCommon);
    }
    
    /* Check back that ADC registers have effectively been configured to      */
    /* ensure of no potential problem of ADC core IP clocking.                */
    /* Check through register CFGR1 (excluding analog watchdog configuration: */
    /* set into separate dedicated function, and bits of ADC resolution set   */
    /* out of temporary variable 'tmpCFGR1').                                 */
    if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_RES))
         == tmpCFGR1)
    {
      /* Set ADC error code to none */
      ADC_CLEAR_ERRORCODE(hadc);
      
      /* Set the ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_BUSY_INTERNAL,
                        HAL_ADC_STATE_READY);
    }
    else
    {
      /* Update ADC state machine to error */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_BUSY_INTERNAL,
                        HAL_ADC_STATE_ERROR_INTERNAL);
      
      /* Set ADC error code to ADC IP internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      
      tmp_hal_status = HAL_ERROR;
    }
  
  }
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
        
    tmp_hal_status = HAL_ERROR;
  }
  
  /* Return function status */
  return tmp_hal_status;
}


/**
  * @brief  Deinitialize the ADC peripheral registers to their default reset
  *         values, with deinitialization of the ADC MSP.
  * @note   For devices with several ADCs: reset of ADC common registers is done 
  *         only if all ADCs sharing the same common group are disabled.
  *         If this is not the case, reset of these common parameters reset is  
  *         bypassed without error reporting: it can be the intended behaviour in
  *         case of reset of a single ADC while the other ADCs sharing the same 
  *         common group is still running.
  * @param  hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check ADC handle */
  if(hadc == NULL)
  {
     return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
  
  /* Stop potential conversion on going, on regular group */
  tmp_hal_status = ADC_ConversionStop(hadc);
  
  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {   
    /* Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);
    
    /* Check if ADC is effectively disabled */
    if (tmp_hal_status != HAL_ERROR)
    {
      /* Change ADC state */
      hadc->State = HAL_ADC_STATE_READY;
    }
  }
  
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  if (tmp_hal_status != HAL_ERROR)
  {
  
    /* ========== Reset ADC registers ========== */
    /* Reset register IER */
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD   | ADC_IT_OVR  |
                                ADC_IT_EOS   | ADC_IT_EOC  |
                                ADC_IT_EOSMP | ADC_IT_RDY   ) );
        
    /* Reset register ISR */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD   | ADC_FLAG_OVR  |
                                ADC_FLAG_EOS   | ADC_FLAG_EOC  |
                                ADC_FLAG_EOSMP | ADC_FLAG_RDY   ) );
      
    /* Reset register CR */
    /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode     */
    /* "read-set": no direct reset applicable.                                */

    /* Reset register CFGR1 */
    hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH   | ADC_CFGR1_AWDEN  | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN |
                               ADC_CFGR1_AUTOFF  | ADC_CFGR1_WAIT   | ADC_CFGR1_CONT   | ADC_CFGR1_OVRMOD |     
                               ADC_CFGR1_EXTEN   | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN  | ADC_CFGR1_RES    |
                               ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN                      );
    
    /* Reset register CFGR2 */
    /* Note: Update of ADC clock mode is conditioned to ADC state disabled:   */
    /*       already done above.                                              */
    hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE;
    
    /* Reset register SMPR */
    hadc->Instance->SMPR &= ~ADC_SMPR_SMP;
    
    /* Reset register TR1 */
    hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
    
    /* Reset register CHSELR */
    hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 |
                                ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 |
                                ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9  | ADC_CHSELR_CHSEL8  |
                                ADC_CHSELR_CHSEL7  | ADC_CHSELR_CHSEL6  | ADC_CHSELR_CHSEL5  | ADC_CHSELR_CHSEL4  |
                                ADC_CHSELR_CHSEL3  | ADC_CHSELR_CHSEL2  | ADC_CHSELR_CHSEL1  | ADC_CHSELR_CHSEL0   );
    
    /* Reset register DR */
    /* bits in access mode read only, no direct reset applicable*/
    
    /* Reset register CCR */
    ADC->CCR &= ~(ADC_CCR_ALL);

    /* ========== Hard reset ADC peripheral ========== */
    /* Performs a global reset of the entire ADC peripheral: ADC state is     */
    /* forced to a similar state after device power-on.                       */
    /* If needed, copy-paste and uncomment the following reset code into      */
    /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)":              */
    /*                                                                        */
    /*  __HAL_RCC_ADC1_FORCE_RESET()                                                  */
    /*  __HAL_RCC_ADC1_RELEASE_RESET()                                                */

#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    if (hadc->MspDeInitCallback == NULL)
    {
      hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit  */
    }
    
    /* DeInit the low level hardware */
    hadc->MspDeInitCallback(hadc);
#else
    /* DeInit the low level hardware */
    HAL_ADC_MspDeInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Set ADC error code to none */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Set ADC state */
    hadc->State = HAL_ADC_STATE_RESET; 
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

    
/**
  * @brief  Initializes the ADC MSP.
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspInit must be implemented in the user file.
   */ 
}

/**
  * @brief  DeInitializes the ADC MSP.
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspDeInit must be implemented in the user file.
   */ 
}

#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User ADC Callback
  *         To be used instead of the weak predefined callback
  * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
  *                the configuration information for the specified ADC.
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
  *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
  *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;
  
  if (pCallback == NULL)
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

    return HAL_ERROR;
  }
  
  if ((hadc->State & HAL_ADC_STATE_READY) != 0)
  {
    switch (CallbackID)
    {
      case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
        hadc->ConvCpltCallback = pCallback;
        break;
      
      case HAL_ADC_CONVERSION_HALF_CB_ID :
        hadc->ConvHalfCpltCallback = pCallback;
        break;
      
      case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
        hadc->LevelOutOfWindowCallback = pCallback;
        break;
      
      case HAL_ADC_ERROR_CB_ID :
        hadc->ErrorCallback = pCallback;
        break;
      
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = pCallback;
        break;
      
      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = pCallback;
        break;
      
      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status = HAL_ERROR;
        break;
    }
  }
  else if (HAL_ADC_STATE_RESET == hadc->State)
  {
    switch (CallbackID)
    {
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = pCallback;
        break;
      
      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = pCallback;
        break;
      
      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
      
        /* Return error status */
        status = HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
    
    /* Return error status */
    status =  HAL_ERROR;
  }
  
  return status;
}

/**
  * @brief  Unregister a ADC Callback
  *         ADC callback is redirected to the weak predefined callback
  * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
  *                the configuration information for the specified ADC.
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
  *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
  *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;
  
  if ((hadc->State & HAL_ADC_STATE_READY) != 0)
  {
    switch (CallbackID)
    {
      case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
        hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
        break;
      
      case HAL_ADC_CONVERSION_HALF_CB_ID :
        hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
        break;
      
      case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
        hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
        break;
      
      case HAL_ADC_ERROR_CB_ID :
        hadc->ErrorCallback = HAL_ADC_ErrorCallback;
        break;
      
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit              */
        break;
      
      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit            */
        break;
      
      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
        
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if (HAL_ADC_STATE_RESET == hadc->State)
  {
    switch (CallbackID)
    {
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = HAL_ADC_MspInit;                   /* Legacy weak MspInit              */
        break;
        
      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = HAL_ADC_MspDeInit;               /* Legacy weak MspDeInit            */
        break;
        
      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
        
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
    
    /* Return error status */
    status =  HAL_ERROR;
  }
  
  return status;
}

#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
 *  @brief    IO operation functions 
 *
@verbatim   
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Start conversion of regular group.
      (+) Stop conversion of regular group.
      (+) Poll for conversion complete on regular group.
      (+) Poll for conversion event.
      (+) Get result of regular channel conversion.
      (+) Start conversion of regular group and enable interruptions.
      (+) Stop conversion of regular group and disable interruptions.
      (+) Handle ADC interrupt request
      (+) Start conversion of regular group and enable DMA transfer.
      (+) Stop conversion of regular group and disable ADC DMA transfer.
@endverbatim
  * @{
  */

/**
  * @brief  Enables ADC, starts conversion of regular group.
  *         Interruptions enabled in this function: None.
  * @param  hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Perform ADC enable and conversion start if no conversion is on going */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
  {
    /* Process locked */
    __HAL_LOCK(hadc);
      
    /* Enable the ADC peripheral */
    /* If low power mode AutoPowerOff is enabled, power-on/off phases are     */
    /* performed automatically by hardware.                                   */
    if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
    {
      tmp_hal_status = ADC_Enable(hadc);
    }
    
    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);
      
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
      
      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);
      
      /* Clear regular group conversion flag and overrun flag */
      /* (To ensure of no unknown state from potential previous ADC           */
      /* operations)                                                          */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
      
      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      hadc->Instance->CR |= ADC_CR_ADSTART;
    }
  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group, disable ADC peripheral.
  * @param  hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
{ 
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* 1. Stop potential conversion on going, on regular group */
  tmp_hal_status = ADC_ConversionStop(hadc);
  
  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* 2. Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);
    
    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY,
                        HAL_ADC_STATE_READY);
    }
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Wait for regular group conversion to be completed.
  * @note   ADC conversion flags EOS (end of sequence) and EOC (end of
  *         conversion) are cleared by this function, with an exception:
  *         if low power feature "LowPowerAutoWait" is enabled, flags are 
  *         not cleared to not interfere with this feature until data register
  *         is read using function HAL_ADC_GetValue().
  * @note   This function cannot be used in a particular setup: ADC configured 
  *         in DMA mode and polling for end of each conversion (ADC init
  *         parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
  *         In this case, DMA resets the flag EOC and polling cannot be
  *         performed on each conversion. Nevertheless, polling can still 
  *         be performed on the complete sequence (ADC init
  *         parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
  * @param  hadc ADC handle
  * @param  Timeout Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
  uint32_t tickstart;
  uint32_t tmp_Flag_EOC;
 
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* If end of conversion selected to end of sequence */
  if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
  {
    tmp_Flag_EOC = ADC_FLAG_EOS;
  }
  /* If end of conversion selected to end of each conversion */
  else /* ADC_EOC_SINGLE_CONV */
  {
    /* Verification that ADC configuration is compliant with polling for      */
    /* each conversion:                                                       */
    /* Particular case is ADC configured in DMA mode and ADC sequencer with   */
    /* several ranks and polling for end of each conversion.                  */
    /* For code simplicity sake, this particular case is generalized to       */
    /* ADC configured in DMA mode and and polling for end of each conversion. */
    if (HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN))
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
      
      /* Process unlocked */
      __HAL_UNLOCK(hadc);
      
      return HAL_ERROR;
    }
    else
    {
      tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS);
    }
  }
  
  /* Get tick count */
  tickstart = HAL_GetTick();
  
  /* Wait until End of Conversion flag is raised */
  while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
      {
        /* Update ADC state machine to timeout */
        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_TIMEOUT;
      }
    }
  }
    
  /* Update ADC state machine */
  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
  
  /* Determine whether any further conversion upcoming on group regular       */
  /* by external trigger, continuous mode or scan sequence on going.          */
  if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
     (hadc->Init.ContinuousConvMode == DISABLE)   )
  {
    /* If End of Sequence is reached, disable interrupts */
    if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
    {
      /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit             */
      /* ADSTART==0 (no conversion on going)                                  */
      if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
      {
        /* Disable ADC end of single conversion interrupt on group regular */
        /* Note: Overrun interrupt was enabled with EOC interrupt in          */
        /* HAL_Start_IT(), but is not disabled here because can be used       */
        /* by overrun IRQ process below.                                      */
        __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
        
        /* Set ADC state */
        ADC_STATE_CLR_SET(hadc->State,
                          HAL_ADC_STATE_REG_BUSY,
                          HAL_ADC_STATE_READY);
      }
      else
      {
        /* Change ADC state to error state */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
        
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      }
    }
  }
  
  /* Clear end of conversion flag of regular group if low power feature       */
  /* "LowPowerAutoWait " is disabled, to not interfere with this feature      */
  /* until data register is read using function HAL_ADC_GetValue().           */
  if (hadc->Init.LowPowerAutoWait == DISABLE)
  {
    /* Clear regular group conversion flag */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
  }
  
  /* Return ADC state */
  return HAL_OK;
}

/**
  * @brief  Poll for conversion event.
  * @param  hadc ADC handle
  * @param  EventType the ADC event type.
  *          This parameter can be one of the following values:
  *            @arg ADC_AWD_EVENT: ADC Analog watchdog event
  *            @arg ADC_OVR_EVENT: ADC Overrun event
  * @param  Timeout Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
{
  uint32_t tickstart=0; 
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_EVENT_TYPE(EventType));
  
  /* Get tick count */
  tickstart = HAL_GetTick();   
      
  /* Check selected event flag */
  while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
      {
        /* Update ADC state machine to timeout */
        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_TIMEOUT;
      }
    }
  }

  switch(EventType)
  {
  /* Analog watchdog (level out of window) event */
  case ADC_AWD_EVENT:
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
      
    /* Clear ADC analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
    break;
  
  /* Overrun event */
  default: /* Case ADC_OVR_EVENT */
    /* If overrun is set to overwrite previous data, overrun event is not     */
    /* considered as an error.                                                */
    /* (cf ref manual "Managing conversions without using the DMA and without */
    /* overrun ")                                                             */
    if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
        
      /* Set ADC error code to overrun */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
    }
    
    /* Clear ADC Overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
    break;
  }
  
  /* Return ADC state */
  return HAL_OK;
}

/**
  * @brief  Enables ADC, starts conversion of regular group with interruption.
  *         Interruptions enabled in this function:
  *          - EOC (end of conversion of regular group) or EOS (end of 
  *            sequence of regular group) depending on ADC initialization 
  *            parameter "EOCSelection"
  *          - overrun (if available)
  *         Each of these interruptions has its dedicated callback function.
  * @param  hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
    
  /* Perform ADC enable and conversion start if no conversion is on going */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
  {
    /* Process locked */
    __HAL_LOCK(hadc);
     
    /* Enable the ADC peripheral */
    /* If low power mode AutoPowerOff is enabled, power-on/off phases are     */
    /* performed automatically by hardware.                                   */
    if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
    {
      tmp_hal_status = ADC_Enable(hadc);
    }
    
    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);
      
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
      
      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);
      
      /* Clear regular group conversion flag and overrun flag */
      /* (To ensure of no unknown state from potential previous ADC           */
      /* operations)                                                          */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
      
      /* Enable ADC end of conversion interrupt */
      /* Enable ADC overrun interrupt */  
      switch(hadc->Init.EOCSelection)
      {
        case ADC_EOC_SEQ_CONV: 
          __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
          __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR));
          break;
        /* case ADC_EOC_SINGLE_CONV */
        default:
          __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
          break;
      }
      
      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      hadc->Instance->CR |= ADC_CR_ADSTART;
    }
  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }    
    
  /* Return function status */
  return tmp_hal_status;
}


/**
  * @brief  Stop ADC conversion of regular group, disable interruption of 
  *         end-of-conversion, disable ADC peripheral.
  * @param  hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* 1. Stop potential conversion on going, on regular group */
  tmp_hal_status = ADC_ConversionStop(hadc);
   
  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC end of conversion interrupt for regular group */
    /* Disable ADC overrun interrupt */
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
    
    /* 2. Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);
    
    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY,
                        HAL_ADC_STATE_READY);
    }
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Enables ADC, starts conversion of regular group and transfers result
  *         through DMA.
  *         Interruptions enabled in this function:
  *          - DMA transfer complete
  *          - DMA half transfer
  *          - overrun
  *         Each of these interruptions has its dedicated callback function.
  * @param  hadc ADC handle
  * @param  pData The destination Buffer address.
  * @param  Length The length of data to be transferred from ADC peripheral to memory.
  * @retval None
  */
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Perform ADC enable and conversion start if no conversion is on going */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
  {
    /* Process locked */
    __HAL_LOCK(hadc);

    /* Enable the ADC peripheral */
    /* If low power mode AutoPowerOff is enabled, power-on/off phases are       */
    /* performed automatically by hardware.                                     */
    if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
    {
      tmp_hal_status = ADC_Enable(hadc);
    }
    
    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);
      
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
      
      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);

      /* Set the DMA transfer complete callback */
      hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;

      /* Set the DMA half transfer complete callback */
      hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
      
      /* Set the DMA error callback */
      hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;

      
      /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC   */
      /* start (in case of SW start):                                         */
      
      /* Clear regular group conversion flag and overrun flag */
      /* (To ensure of no unknown state from potential previous ADC           */
      /* operations)                                                          */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
      
      /* Enable ADC overrun interrupt */
      __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
      
      /* Enable ADC DMA mode */
      hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN;
      
      /* Start the DMA channel */
      HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
           
      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      hadc->Instance->CR |= ADC_CR_ADSTART;
    }
  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }
    
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group, disable ADC DMA transfer, disable 
  *         ADC peripheral.
  *         Each of these interruptions has its dedicated callback function.
  * @param  hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
{  
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* 1. Stop potential conversion on going, on regular group */
  tmp_hal_status = ADC_ConversionStop(hadc);
  
  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
    hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN;
    
    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
    /* while DMA transfer is on going)                                        */
    tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);   
    
    /* Check if DMA channel effectively disabled */
    if (tmp_hal_status != HAL_OK)
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
    }
    
    /* Disable ADC overrun interrupt */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
    
    /* 2. Disable the ADC peripheral */
    /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep  */
    /* in memory a potential failing status.                                  */
    if (tmp_hal_status == HAL_OK)
    {
      tmp_hal_status = ADC_Disable(hadc);
    }
    else
    {
      ADC_Disable(hadc);
    }

    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY,
                        HAL_ADC_STATE_READY);
    }
    
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Get ADC regular group conversion result.
  * @note   Reading register DR automatically clears ADC flag EOC
  *         (ADC group regular end of unitary conversion).
  * @note   This function does not clear ADC flag EOS 
  *         (ADC group regular end of sequence conversion).
  *         Occurrence of flag EOS rising:
  *          - If sequencer is composed of 1 rank, flag EOS is equivalent
  *            to flag EOC.
  *          - If sequencer is composed of several ranks, during the scan
  *            sequence flag EOC only is raised, at the end of the scan sequence
  *            both flags EOC and EOS are raised.
  *         To clear this flag, either use function: 
  *         in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
  *         model polling: @ref HAL_ADC_PollForConversion() 
  *         or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
  * @param  hadc ADC handle
  * @retval ADC group regular conversion data
  */
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Note: EOC flag is not cleared here by software because automatically     */
  /*       cleared by hardware when reading register DR.                      */
  
  /* Return ADC converted value */ 
  return hadc->Instance->DR;
}

/**
  * @brief  Handles ADC interrupt request.  
  * @param  hadc ADC handle
  * @retval None
  */
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
  
  /* ========== Check End of Conversion flag for regular group ========== */
  if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) || 
      (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS))   )
  {
    /* Update state machine on conversion status if not in error state */
    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
    }
    
    /* Determine whether any further conversion upcoming on group regular     */
    /* by external trigger, continuous mode or scan sequence on going.        */
    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
       (hadc->Init.ContinuousConvMode == DISABLE)   )
    {
      /* If End of Sequence is reached, disable interrupts */
      if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
      {
        /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit           */
        /* ADSTART==0 (no conversion on going)                                */
        if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
        {
          /* Disable ADC end of single conversion interrupt on group regular */
          /* Note: Overrun interrupt was enabled with EOC interrupt in        */
          /* HAL_Start_IT(), but is not disabled here because can be used     */
          /* by overrun IRQ process below.                                    */
          __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
          
          /* Set ADC state */
          ADC_STATE_CLR_SET(hadc->State,
                            HAL_ADC_STATE_REG_BUSY,
                            HAL_ADC_STATE_READY);
        }
        else
        {
          /* Change ADC state to error state */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
          
          /* Set ADC error code to ADC IP internal error */
          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        }
      }
    }
    
    /* Note: into callback, to determine if conversion has been triggered     */
    /*       from EOC or EOS, possibility to use:                             */
    /*        " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) "                */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
      hadc->ConvCpltCallback(hadc);
#else
    HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    
    /* Clear regular group conversion flag */
    /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of         */
    /*       conversion flags clear induces the release of the preserved data.*/
    /*       Therefore, if the preserved data value is needed, it must be     */
    /*       read preliminarily into HAL_ADC_ConvCpltCallback().              */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
  }
   
  /* ========== Check Analog watchdog flags ========== */
  if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD))
  {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);

#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
      hadc->LevelOutOfWindowCallback(hadc);
#else
    HAL_ADC_LevelOutOfWindowCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
    
    /* Clear ADC Analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
   
  }
  
  
  /* ========== Check Overrun flag ========== */
  if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR))
  {
    /* If overrun is set to overwrite previous data (default setting),        */
    /* overrun event is not considered as an error.                           */
    /* (cf ref manual "Managing conversions without using the DMA and without */
    /* overrun ")                                                             */
    /* Exception for usage with DMA overrun event always considered as an     */
    /* error.                                                                 */
    if ((hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)            ||
        HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)  )
    {
      /* Set ADC error code to overrun */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
      
      /* Clear ADC overrun flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
      
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
      hadc->ErrorCallback(hadc);
#else
      HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
    }
    
    /* Clear the Overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
  }

}


/**
  * @brief  Conversion complete callback in non blocking mode 
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvCpltCallback must be implemented in the user file.
   */
}

/**
  * @brief  Conversion DMA half-transfer callback in non blocking mode 
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
  */
}

/**
  * @brief  Analog watchdog callback in non blocking mode. 
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file.
  */
}

/**
  * @brief  ADC error callback in non blocking mode
  *        (ADC conversion with interruption or transfer by DMA)
  * @param  hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ErrorCallback must be implemented in the user file.
  */
}


/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
 *  @brief    Peripheral Control functions 
 *
@verbatim   
 ===============================================================================
             ##### Peripheral Control functions #####
 ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Configure channels on regular group
      (+) Configure the analog watchdog
      
@endverbatim
  * @{
  */

/**
  * @brief  Configures the the selected channel to be linked to the regular
  *         group.
  * @note   In case of usage of internal measurement channels:
  *         VrefInt/Vbat/TempSensor.
  *         Sampling time constraints must be respected (sampling time can be 
  *         adjusted in function of ADC clock frequency and sampling time 
  *         setting).
  *         Refer to device datasheet for timings values, parameters TS_vrefint,
  *         TS_vbat, TS_temp (values rough order: 5us to 17us).
  *         These internal paths can be be disabled using function 
  *         HAL_ADC_DeInit().
  * @note   Possibility to update parameters on the fly:
  *         This function initializes channel into regular group, following  
  *         calls to this function can be used to reconfigure some parameters 
  *         of structure "ADC_ChannelConfTypeDef" on the fly, without reseting 
  *         the ADC.
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure 
  *         "ADC_ChannelConfTypeDef".
  * @param  hadc ADC handle
  * @param  sConfig Structure of ADC channel for regular group.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  __IO uint32_t wait_loop_index = 0U;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CHANNEL(sConfig->Channel));
  assert_param(IS_ADC_RANK(sConfig->Rank));
  
  if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
  {
    assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
  }
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Parameters update conditioned to ADC state:                              */
  /* Parameters that can be updated when ADC is disabled or enabled without   */
  /* conversion on going on regular group:                                    */
  /*  - Channel number                                                        */
  /*  - Channel sampling time                                                 */
  /*  - Management of internal measurement channels: VrefInt/TempSensor/Vbat  */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
  {
    /* Configure channel: depending on rank setting, add it or remove it from */
    /* ADC conversion sequencer.                                              */
    if (sConfig->Rank != ADC_RANK_NONE)
    {
      /* Regular sequence configuration */
      /* Set the channel selection register from the selected channel */
      hadc->Instance->CHSELR |= ADC_CHSELR_CHANNEL(sConfig->Channel);
      
      /* Channel sampling time configuration */
      /* Management of parameters "SamplingTimeCommon" and "SamplingTime"     */
      /* (obsolete): sampling time set in this function with                  */
      /* parameter "SamplingTime" (obsolete) only if not already set into     */
      /* ADC initialization structure with parameter "SamplingTimeCommon".    */
      if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
      {
        /* Modify sampling time if needed (not needed in case of reoccurrence */
        /* for several channels programmed consecutively into the sequencer)  */
        if (sConfig->SamplingTime != ADC_GET_SAMPLINGTIME(hadc))
        {
          /* Channel sampling time configuration */
          /* Clear the old sample time */
          hadc->Instance->SMPR &= ~(ADC_SMPR_SMP);
          
          /* Set the new sample time */
          hadc->Instance->SMPR |= ADC_SMPR_SET(sConfig->SamplingTime);
        }
      }
      
      /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
      /* internal measurement paths enable: If internal channel selected,     */
      /* enable dedicated internal buffers and path.                          */
      /* Note: these internal measurement paths can be disabled using         */
      /*       HAL_ADC_DeInit() or removing the channel from sequencer with   */
      /*       channel configuration parameter "Rank".                        */
      if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
      {
        /* If Channel_16 is selected, enable Temp. sensor measurement path. */
        /* If Channel_17 is selected, enable VREFINT measurement path. */
        /* If Channel_18 is selected, enable VBAT measurement path. */
        ADC->CCR |= ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel);
        
        /* If Temp. sensor is selected, wait for stabilization delay */
        if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
        {
          /* Delay for temperature sensor stabilization time */
          /* Compute number of CPU cycles to wait for */
          wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
          while(wait_loop_index != 0U)
          {
            wait_loop_index--;
          }
        }
      }
    }
    else
    {
      /* Regular sequence configuration */
      /* Reset the channel selection register from the selected channel */
      hadc->Instance->CHSELR &= ~ADC_CHSELR_CHANNEL(sConfig->Channel);
      
      /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
      /* internal measurement paths disable: If internal channel selected,    */
      /* disable dedicated internal buffers and path.                         */
      if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
      {
        /* If Channel_16 is selected, disable Temp. sensor measurement path. */
        /* If Channel_17 is selected, disable VREFINT measurement path. */
        /* If Channel_18 is selected, disable VBAT measurement path. */
        ADC->CCR &= ~ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel);
      }
    }
    
  }
   
  /* If a conversion is on going on regular group, no update on regular       */
  /* channel could be done on neither of the channel configuration structure  */
  /* parameters.                                                              */
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
    
    tmp_hal_status = HAL_ERROR;
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}


/**
  * @brief  Configures the analog watchdog.
  * @note   Possibility to update parameters on the fly:
  *         This function initializes the selected analog watchdog, following  
  *         calls to this function can be used to reconfigure some parameters 
  *         of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting 
  *         the ADC.
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure 
  *         "ADC_AnalogWDGConfTypeDef".
  * @param  hadc ADC handle
  * @param  AnalogWDGConfig Structure of ADC analog watchdog configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  uint32_t tmpAWDHighThresholdShifted;
  uint32_t tmpAWDLowThresholdShifted;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));

  /* Verify if threshold is within the selected ADC resolution */
  assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
  assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));

  if(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG)
  {
    assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
  }
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Parameters update conditioned to ADC state:                              */
  /* Parameters that can be updated when ADC is disabled or enabled without   */
  /* conversion on going on regular group:                                    */
  /*  - Analog watchdog channels                                              */
  /*  - Analog watchdog thresholds                                            */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
  {
    /* Configuration of analog watchdog:                                      */
    /*  - Set the analog watchdog enable mode: one or overall group of        */
    /*    channels.                                                           */
    /*  - Set the Analog watchdog channel (is not used if watchdog            */
    /*    mode "all channels": ADC_CFGR_AWD1SGL=0).                           */
    hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL |
                                ADC_CFGR1_AWDEN  |
                                ADC_CFGR1_AWDCH   );
    
    hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode            |
                               ADC_CFGR_AWDCH(AnalogWDGConfig->Channel)  );

    /* Shift the offset in function of the selected ADC resolution: Thresholds*/
    /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0   */
    tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
    tmpAWDLowThresholdShifted  = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
    
    /* Set the high and low thresholds */
    hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
    hadc->Instance->TR |=  ( ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) |
                             tmpAWDLowThresholdShifted                           );
    
    /* Clear the ADC Analog watchdog flag (in case of left enabled by         */
    /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler()   */
    /* or HAL_ADC_PollForEvent().                                             */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD);
    
    /* Configure ADC Analog watchdog interrupt */
    if(AnalogWDGConfig->ITMode == ENABLE)
    {
      /* Enable the ADC Analog watchdog interrupt */
      __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
    }
    else
    {
      /* Disable the ADC Analog watchdog interrupt */
      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
    }
    
  }
  /* If a conversion is on going on regular group, no update could be done    */
  /* on neither of the AWD configuration structure parameters.                */
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
    
    tmp_hal_status = HAL_ERROR;
  }
  
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}


/**
  * @}
  */


/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
 *  @brief    Peripheral State functions
 *
@verbatim
 ===============================================================================
            ##### Peripheral State and Errors functions #####
 ===============================================================================  
    [..]
    This subsection provides functions to get in run-time the status of the  
    peripheral.
      (+) Check the ADC state
      (+) Check the ADC error code

@endverbatim
  * @{
  */

/**
  * @brief  Return the ADC state
  * @note   ADC state machine is managed by bitfields, ADC status must be 
  *         compared with states bits.
  *         For example:                                                         
  *           " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_REG_BUSY)) "
  *           " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1)    ) "
  * @param  hadc ADC handle
  * @retval HAL state
  */
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Return ADC state */
  return hadc->State;
}

/**
  * @brief  Return the ADC error code
  * @param  hadc ADC handle
  * @retval ADC Error Code
  */
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
  return hadc->ErrorCode;
}

/**
  * @}
  */  

/**
  * @}
  */

/** @defgroup ADC_Private_Functions ADC Private Functions
  * @{
  */

/**
  * @brief  Enable the selected ADC.
  * @note   Prerequisite condition to use this function: ADC must be disabled
  *         and voltage regulator must be enabled (done into HAL_ADC_Init()).
  * @note   If low power mode AutoPowerOff is enabled, power-on/off phases are
  *         performed automatically by hardware.
  *         In this mode, this function is useless and must not be called because 
  *         flag ADC_FLAG_RDY is not usable.
  *         Therefore, this function must be called under condition of
  *         "if (hadc->Init.LowPowerAutoPowerOff != ENABLE)".
  * @param  hadc ADC handle
  * @retval HAL status.
  */
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
{
  uint32_t tickstart = 0U;
  __IO uint32_t wait_loop_index = 0U;
  
  /* ADC enable and wait for ADC ready (in case of ADC is disabled or         */
  /* enabling phase not yet completed: flag ADC ready not yet set).           */
  /* Timeout implemented to not be stuck if ADC cannot be enabled (possible   */
  /* causes: ADC clock not running, ...).                                     */
  if (ADC_IS_ENABLE(hadc) == RESET)
  {
    /* Check if conditions to enable the ADC are fulfilled */
    if (ADC_ENABLING_CONDITIONS(hadc) == RESET)
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
    
      /* Set ADC error code to ADC IP internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      
      return HAL_ERROR;
    }
    
    /* Enable the ADC peripheral */
    __HAL_ADC_ENABLE(hadc);
    
    /* Delay for ADC stabilization time */
    /* Compute number of CPU cycles to wait for */
    wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
    while(wait_loop_index != 0U)
    {
      wait_loop_index--;
    }

    /* Get tick count */
    tickstart = HAL_GetTick();
    
    /* Wait for ADC effectively enabled */
    while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
    {
      if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
      
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      
        return HAL_ERROR;
      }
    }   
    
  }
   
  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  Disable the selected ADC.
  * @note   Prerequisite condition to use this function: ADC conversions must be
  *         stopped.
  * @param  hadc ADC handle
  * @retval HAL status.
  */
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc)
{
  uint32_t tickstart = 0U;
  
  /* Verification if ADC is not already disabled:                             */
  /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already  */
  /*       disabled.                                                          */
  if (ADC_IS_ENABLE(hadc) != RESET)
  {
    /* Check if conditions to disable the ADC are fulfilled */
    if (ADC_DISABLING_CONDITIONS(hadc) != RESET)
    {
      /* Disable the ADC peripheral */
      __HAL_ADC_DISABLE(hadc);
    }
    else
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
    
      /* Set ADC error code to ADC IP internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      
      return HAL_ERROR;
    }
     
    /* Wait for ADC effectively disabled */
    /* Get tick count */
    tickstart = HAL_GetTick();
    
    while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
    {
      if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
      
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        
        return HAL_ERROR;
      }
    }
  }
  
  /* Return HAL status */
  return HAL_OK;
}


/**
  * @brief  Stop ADC conversion.
  * @note   Prerequisite condition to use this function: ADC conversions must be
  *         stopped to disable the ADC.
  * @param  hadc ADC handle
  * @retval HAL status.
  */
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc)
{
  uint32_t tickstart = 0U;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
    
  /* Verification if ADC is not already stopped on regular group to bypass    */
  /* this function if not needed.                                             */
  if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
  {
    
    /* Stop potential conversion on going on regular group */
    /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
    if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && 
        HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS)                  )
    {
      /* Stop conversions on regular group */
      hadc->Instance->CR |= ADC_CR_ADSTP;
    }
    
    /* Wait for conversion effectively stopped */
    /* Get tick count */
    tickstart = HAL_GetTick();
      
    while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET)
    {
      if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
      
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        
        return HAL_ERROR;
      }
    }
    
  }
   
  /* Return HAL status */
  return HAL_OK;
}


/**
  * @brief  DMA transfer complete callback. 
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Update state machine on conversion status if not in error state */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
    
    /* Determine whether any further conversion upcoming on group regular     */
    /* by external trigger, continuous mode or scan sequence on going.        */
    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
       (hadc->Init.ContinuousConvMode == DISABLE)   )
    {
      /* If End of Sequence is reached, disable interrupts */
      if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
      {
        /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit           */
        /* ADSTART==0 (no conversion on going)                                */
        if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
        {
          /* Disable ADC end of single conversion interrupt on group regular */
          /* Note: Overrun interrupt was enabled with EOC interrupt in        */
          /* HAL_Start_IT(), but is not disabled here because can be used     */
          /* by overrun IRQ process below.                                    */
          __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
          
          /* Set ADC state */
          ADC_STATE_CLR_SET(hadc->State,
                            HAL_ADC_STATE_REG_BUSY,
                            HAL_ADC_STATE_READY);
        }
        else
        {
          /* Change ADC state to error state */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
          
          /* Set ADC error code to ADC IP internal error */
          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        }
      }
    }

    /* Conversion complete callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->ConvCpltCallback(hadc);
#else
    HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
  }
  else
  {
    /* Call DMA error callback */
    hadc->DMA_Handle->XferErrorCallback(hdma);
  }

}

/**
  * @brief  DMA half transfer complete callback. 
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Half conversion callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->ConvHalfCpltCallback(hadc);
#else
  HAL_ADC_ConvHalfCpltCallback(hadc); 
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}

/**
  * @brief  DMA error callback 
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void ADC_DMAError(DMA_HandleTypeDef *hdma)   
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
  
  /* Set ADC error code to DMA error */
  SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
  
  /* Error callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
  hadc->ErrorCallback(hadc);
#else
  HAL_ADC_ErrorCallback(hadc); 
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}

/**
  * @}
  */

#endif /* HAL_ADC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/