summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
blob: fe9aacd6f557ec4692a75bfc0c7cb2ce69766cdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_sparse_f32.c
 * Description:  Floating-point sparse FIR filter processing function
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @defgroup FIR_Sparse Finite Impulse Response (FIR) Sparse Filters
 *
 * This group of functions implements sparse FIR filters.
 * Sparse FIR filters are equivalent to standard FIR filters except that most of the coefficients are equal to zero.
 * Sparse filters are used for simulating reflections in communications and audio applications.
 *
 * There are separate functions for Q7, Q15, Q31, and floating-point data types.
 * The functions operate on blocks  of input and output data and each call to the function processes
 * <code>blockSize</code> samples through the filter.  <code>pSrc</code> and
 * <code>pDst</code> points to input and output arrays respectively containing <code>blockSize</code> values.
 *
 * \par Algorithm:
 * The sparse filter instant structure contains an array of tap indices <code>pTapDelay</code> which specifies the locations of the non-zero coefficients.
 * This is in addition to the coefficient array <code>b</code>.
 * The implementation essentially skips the multiplications by zero and leads to an efficient realization.
 * <pre>
 *     y[n] = b[0] * x[n-pTapDelay[0]] + b[1] * x[n-pTapDelay[1]] + b[2] * x[n-pTapDelay[2]] + ...+ b[numTaps-1] * x[n-pTapDelay[numTaps-1]]
 * </pre>
 * \par
 * \image html FIRSparse.gif "Sparse FIR filter.  b[n] represents the filter coefficients"
 * \par
 * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>;
 * <code>pTapDelay</code> points to an array of nonzero indices and is also of size <code>numTaps</code>;
 * <code>pState</code> points to a state array of size <code>maxDelay + blockSize</code>, where
 * <code>maxDelay</code> is the largest offset value that is ever used in the <code>pTapDelay</code> array.
 * Some of the processing functions also require temporary working buffers.
 *
 * \par Instance Structure
 * The coefficients and state variables for a filter are stored together in an instance data structure.
 * A separate instance structure must be defined for each filter.
 * Coefficient and offset arrays may be shared among several instances while state variable arrays cannot be shared.
 * There are separate instance structure declarations for each of the 4 supported data types.
 *
 * \par Initialization Functions
 * There is also an associated initialization function for each data type.
 * The initialization function performs the following operations:
 * - Sets the values of the internal structure fields.
 * - Zeros out the values in the state buffer.
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numTaps, pCoeffs, pTapDelay, maxDelay, stateIndex, pState. Also set all of the values in pState to zero.
 *
 * \par
 * Use of the initialization function is optional.
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
 * To place an instance structure into a const data section, the instance structure must be manually initialized.
 * Set the values in the state buffer to zeros before static initialization.
 * The code below statically initializes each of the 4 different data type filter instance structures
 * <pre>
 *arm_fir_sparse_instance_f32 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
 *arm_fir_sparse_instance_q31 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
 *arm_fir_sparse_instance_q15 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
 *arm_fir_sparse_instance_q7 S =  {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
 * </pre>
 * \par
 *
 * \par Fixed-Point Behavior
 * Care must be taken when using the fixed-point versions of the sparse FIR filter functions.
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
 * Refer to the function specific documentation below for usage guidelines.
 */

/**
 * @addtogroup FIR_Sparse
 * @{
 */

/**
 * @brief Processing function for the floating-point sparse FIR filter.
 * @param[in]  *S          points to an instance of the floating-point sparse FIR structure.
 * @param[in]  *pSrc       points to the block of input data.
 * @param[out] *pDst       points to the block of output data
 * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
 * @param[in]  blockSize   number of input samples to process per call.
 * @return none.
 */

void arm_fir_sparse_f32(
  arm_fir_sparse_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  float32_t * pScratchIn,
  uint32_t blockSize)
{

  float32_t *pState = S->pState;                 /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *px;                                 /* Scratch buffer pointer */
  float32_t *py = pState;                        /* Temporary pointers for state buffer */
  float32_t *pb = pScratchIn;                    /* Temporary pointers for scratch buffer */
  float32_t *pOut;                               /* Destination pointer */
  int32_t *pTapDelay = S->pTapDelay;             /* Pointer to the array containing offset of the non-zero tap values. */
  uint32_t delaySize = S->maxDelay + blockSize;  /* state length */
  uint16_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter  */
  int32_t readIndex;                             /* Read index of the state buffer */
  uint32_t tapCnt, blkCnt;                       /* loop counters */
  float32_t coeff = *pCoeffs++;                  /* Read the first coefficient value */



  /* BlockSize of Input samples are copied into the state buffer */
  /* StateIndex points to the starting position to write in the state buffer */
  arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
                        (int32_t *) pSrc, 1, blockSize);


  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if (readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Working pointer for state buffer is updated */
  py = pState;

  /* blockSize samples are read from the state buffer */
  arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                       (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                       blockSize);

  /* Working pointer for the scratch buffer */
  px = pb;

  /* Working pointer for destination buffer */
  pOut = pDst;


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* Loop over the blockSize. Unroll by a factor of 4.
   * Compute 4 Multiplications at a time. */
  blkCnt = blockSize >> 2U;

  while (blkCnt > 0U)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,
   * compute the remaining samples */
  blkCnt = blockSize % 0x4U;

  while (blkCnt > 0U)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if (readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 2U;

  while (tapCnt > 0U)
  {

    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer */
    px = pb;

    /* Working pointer for destination buffer */
    pOut = pDst;

    /* Loop over the blockSize. Unroll by a factor of 4.
     * Compute 4 MACS at a time. */
    blkCnt = blockSize >> 2U;

    while (blkCnt > 0U)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize is not a multiple of 4,
     * compute the remaining samples */
    blkCnt = blockSize % 0x4U;

    while (blkCnt > 0U)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex = ((int32_t) S->stateIndex -
                 (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if (readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

	/* Compute last tap without the final read of pTapDelay */

	/* Working pointer for state buffer is updated */
	py = pState;

	/* blockSize samples are read from the state buffer */
	arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
											 (int32_t *) pb, (int32_t *) pb, blockSize, 1,
											 blockSize);

	/* Working pointer for the scratch buffer */
	px = pb;

	/* Working pointer for destination buffer */
	pOut = pDst;

	/* Loop over the blockSize. Unroll by a factor of 4.
	 * Compute 4 MACS at a time. */
	blkCnt = blockSize >> 2U;

	while (blkCnt > 0U)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

	/* If the blockSize is not a multiple of 4,
	 * compute the remaining samples */
	blkCnt = blockSize % 0x4U;

	while (blkCnt > 0U)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

#else

/* Run the below code for Cortex-M0 */

  blkCnt = blockSize;

  while (blkCnt > 0U)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if (readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 2U;

  while (tapCnt > 0U)
  {

    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer */
    px = pb;

    /* Working pointer for destination buffer */
    pOut = pDst;

    blkCnt = blockSize;

    while (blkCnt > 0U)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex =
      ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if (readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

	/* Compute last tap without the final read of pTapDelay */

	/* Working pointer for state buffer is updated */
	py = pState;

	/* blockSize samples are read from the state buffer */
	arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
											 (int32_t *) pb, (int32_t *) pb, blockSize, 1,
											 blockSize);

	/* Working pointer for the scratch buffer */
	px = pb;

	/* Working pointer for destination buffer */
	pOut = pDst;

	blkCnt = blockSize;

	while (blkCnt > 0U)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

#endif /*   #if defined (ARM_MATH_DSP)        */

}

/**
 * @} end of FIR_Sparse group
 */