summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_q15.c
blob: a97978365ae162821c8ef9ccf9f462c2698fbb3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_q15.c
 * Description:  Q15 FIR filter processing function
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup FIR
 * @{
 */

/**
 * @brief Processing function for the Q15 FIR filter.
 * @param[in] *S points to an instance of the Q15 FIR structure.
 * @param[in] *pSrc points to the block of input data.
 * @param[out] *pDst points to the block of output data.
 * @param[in]  blockSize number of samples to process per call.
 * @return none.
 *
 *
 * \par Restrictions
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
 *	In this case input, output, state buffers should be aligned by 32-bit
 *
 * <b>Scaling and Overflow Behavior:</b>
 * \par
 * The function is implemented using a 64-bit internal accumulator.
 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
 *
 * \par
 * Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
 */

#if defined (ARM_MATH_DSP)

/* Run the below code for Cortex-M4 and Cortex-M3 */

#ifndef UNALIGNED_SUPPORT_DISABLE


void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q15_t *px1;                                    /* Temporary q15 pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q31_t x0, x1, x2, x3, c0;                      /* Temporary variables to hold SIMD state and coefficient values */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  uint32_t numTaps = S->numTaps;                 /* Number of taps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */


  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.
   * The variables acc0 ... acc3 hold output values that are being computed:
   *
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]
   */

  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
   ** a second loop below computes the remaining 1 to 3 samples. */
  while (blkCnt > 0U)
  {
    /* Copy four new input samples into the state buffer.
     ** Use 32-bit SIMD to move the 16-bit data.  Only requires two copies. */
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Initialize state pointer of type q15 */
    px1 = pState;

    /* Initialize coeff pointer of type q31 */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:  x[n-N], x[n-N-1] */
    x0 = _SIMD32_OFFSET(px1);

    /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
    x1 = _SIMD32_OFFSET(px1 + 1U);

    px1 += 2U;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-4 coefficients. */
    tapCnt = numTaps >> 2;

    while (tapCnt > 0U)
    {
      /* Read the first two coefficients using SIMD:  b[N] and b[N-1] coefficients */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */
      acc0 = __SMLALD(x0, c0, acc0);

      /* acc1 +=  b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
      acc1 = __SMLALD(x1, c0, acc1);

      /* Read state x[n-N-2], x[n-N-3] */
      x2 = _SIMD32_OFFSET(px1);

      /* Read state x[n-N-3], x[n-N-4] */
      x3 = _SIMD32_OFFSET(px1 + 1U);

      /* acc2 +=  b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
      acc2 = __SMLALD(x2, c0, acc2);

      /* acc3 +=  b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
      acc3 = __SMLALD(x3, c0, acc3);

      /* Read coefficients b[N-2], b[N-3] */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
      acc0 = __SMLALD(x2, c0, acc0);

      /* acc1 +=  b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
      acc1 = __SMLALD(x3, c0, acc1);

      /* Read state x[n-N-4], x[n-N-5] */
      x0 = _SIMD32_OFFSET(px1 + 2U);

      /* Read state x[n-N-5], x[n-N-6] */
      x1 = _SIMD32_OFFSET(px1 + 3U);

      /* acc2 +=  b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
      acc2 = __SMLALD(x0, c0, acc2);

      /* acc3 +=  b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
      acc3 = __SMLALD(x1, c0, acc3);

      px1 += 4U;

      tapCnt--;

    }


    /* If the filter length is not a multiple of 4, compute the remaining filter taps.
     ** This is always be 2 taps since the filter length is even. */
    if ((numTaps & 0x3U) != 0U)
    {
      /* Read 2 coefficients */
      c0 = *__SIMD32(pb)++;

      /* Fetch 4 state variables */
      x2 = _SIMD32_OFFSET(px1);

      x3 = _SIMD32_OFFSET(px1 + 1U);

      /* Perform the multiply-accumulates */
      acc0 = __SMLALD(x0, c0, acc0);

      px1 += 2U;

      acc1 = __SMLALD(x1, c0, acc1);
      acc2 = __SMLALD(x2, c0, acc2);
      acc3 = __SMLALD(x3, c0, acc3);
    }

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.15 with saturation.
     ** Then store the 4 outputs in the destination buffer. */

#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN       */



    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4U;
  while (blkCnt > 0U)
  {
    /* Copy two samples into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Initialize state pointer of type q15 */
    px1 = pState;

    /* Initialize coeff pointer of type q31 */
    pb = pCoeffs;

    tapCnt = numTaps >> 1;

    do
    {

      c0 = *__SIMD32(pb)++;
      x0 = *__SIMD32(px1)++;

      acc0 = __SMLALD(x0, c0, acc0);
      tapCnt--;
    }
    while (tapCnt > 0U);

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculation of count for copying integer writes */
  tapCnt = (numTaps - 1U) >> 2;

  while (tapCnt > 0U)
  {

    /* Copy state values to start of state buffer */
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;

    tapCnt--;

  }

  /* Calculation of count for remaining q15_t data */
  tapCnt = (numTaps - 1U) % 0x4U;

  /* copy remaining data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }
}

#else /* UNALIGNED_SUPPORT_DISABLE */

void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q15_t *px;                                     /* Temporary q31 pointer for SIMD state buffer accesses */
  q31_t x0, x1, x2, c0;                          /* Temporary variables to hold SIMD state and coefficient values */
  uint32_t numTaps = S->numTaps;                 /* Number of taps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */


  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.
   * The variables acc0 ... acc3 hold output values that are being computed:
   *
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]
   */

  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
   ** a second loop below computes the remaining 1 to 3 samples. */
  while (blkCnt > 0U)
  {
    /* Copy four new input samples into the state buffer.
     ** Use 32-bit SIMD to move the 16-bit data.  Only requires two copies. */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;


    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
    px = pState;

    /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:  x[n-N], x[n-N-1] */
    x0 = *__SIMD32(px)++;

    /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
    x2 = *__SIMD32(px)++;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
    tapCnt = numTaps >> 2;

    while (tapCnt > 0)
    {
      /* Read the first two coefficients using SIMD:  b[N] and b[N-1] coefficients */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */
      acc0 = __SMLALD(x0, c0, acc0);

      /* acc2 +=  b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack  x[n-N-1] and x[n-N-2] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read state x[n-N-4], x[n-N-5] */
      x0 = _SIMD32_OFFSET(px);

      /* acc1 +=  b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-3] and x[n-N-4] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* acc3 +=  b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Read coefficients b[N-2], b[N-3] */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
      acc0 = __SMLALD(x2, c0, acc0);

      /* Read state x[n-N-6], x[n-N-7] with offset */
      x2 = _SIMD32_OFFSET(px + 2U);

      /* acc2 +=  b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
      acc2 = __SMLALD(x0, c0, acc2);

      /* acc1 +=  b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-5] and x[n-N-6] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* acc3 +=  b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Update state pointer for next state reading */
      px += 4U;

      /* Decrement tap count */
      tapCnt--;

    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps.
     ** This is always be 2 taps since the filter length is even. */
    if ((numTaps & 0x3U) != 0U)
    {

      /* Read last two coefficients */
      c0 = *__SIMD32(pb)++;

      /* Perform the multiply-accumulates */
      acc0 = __SMLALD(x0, c0, acc0);
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read last state variables */
      x0 = *__SIMD32(px);

      /* Perform the multiply-accumulates */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* Perform the multiply-accumulates */
      acc3 = __SMLALDX(x1, c0, acc3);
    }

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.15 with saturation.
     ** Then store the 4 outputs in the destination buffer. */

#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN       */

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4U;
  while (blkCnt > 0U)
  {
    /* Copy two samples into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Use SIMD to hold states and coefficients */
    px = pState;
    pb = pCoeffs;

    tapCnt = numTaps >> 1U;

    do
    {
      acc0 += (q31_t) * px++ * *pb++;
	  acc0 += (q31_t) * px++ * *pb++;
      tapCnt--;
    }
    while (tapCnt > 0U);

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1U;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculation of count for copying integer writes */
  tapCnt = (numTaps - 1U) >> 2;

  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    tapCnt--;

  }

  /* Calculation of count for remaining q15_t data */
  tapCnt = (numTaps - 1U) % 0x4U;

  /* copy remaining data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }
}


#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */

#else /* ARM_MATH_CM0_FAMILY */


/* Run the below code for Cortex-M0 */

void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */



  q15_t *px;                                     /* Temporary pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q63_t acc;                                     /* Accumulator */
  uint32_t numTaps = S->numTaps;                 /* Number of nTaps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */

  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

  /* Initialize blkCnt with blockSize */
  blkCnt = blockSize;

  while (blkCnt > 0U)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = pCoeffs;

    tapCnt = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
      acc += (q31_t) * px++ * *pb++;
      tapCnt--;
    } while (tapCnt > 0U);

    /* The result is in 2.30 format.  Convert to 1.15
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) __SSAT((acc >> 15U), 16);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Copy numTaps number of values */
  tapCnt = (numTaps - 1U);

  /* copy data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

}

#endif /* #if defined (ARM_MATH_DSP) */




/**
 * @} end of FIR group
 */