summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
blob: 684640e30c85e119748e009650a3284292512e15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_decimate_fast_q15.c
 * Description:  Fast Q15 FIR Decimator
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @addtogroup FIR_decimate
 * @{
 */

/**
 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
 * @param[in] *pSrc points to the block of input data.
 * @param[out] *pDst points to the block of output data
 * @param[in] blockSize number of input samples to process per call.
 * @return none
 *
 * \par Restrictions
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
 *	In this case input, output, state buffers should be aligned by 32-bit
 *
 * <b>Scaling and Overflow Behavior:</b>
 * \par
 * This fast version uses a 32-bit accumulator with 2.30 format.
 * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
 * Thus, if the accumulator result overflows it wraps around and distorts the result.
 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2).
 * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result.
 *
 * \par
 * Refer to the function <code>arm_fir_decimate_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
 * Both the slow and the fast versions use the same instance structure.
 * Use the function <code>arm_fir_decimate_init_q15()</code> to initialize the filter structure.
 */

#ifndef UNALIGNED_SUPPORT_DISABLE

void arm_fir_decimate_fast_q15(
  const arm_fir_decimate_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q15_t *px;                                     /* Temporary pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
  q31_t x0, x1, c0, c1;                          /* Temporary variables to hold state and coefficient values */
  q31_t sum0;                                    /* Accumulators */
  q31_t acc0, acc1;
  q15_t *px0, *px1;
  uint32_t blkCntN3;
  uint32_t numTaps = S->numTaps;                 /* Number of taps */
  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */


  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + (numTaps - 1U);


  /* Total number of output samples to be computed */
  blkCnt = outBlockSize / 2;
  blkCntN3 = outBlockSize - (2 * blkCnt);


  while (blkCnt > 0U)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = 2 * S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while (--i);

    /* Set accumulator to zero */
    acc0 = 0;
    acc1 = 0;

    /* Initialize state pointer */
    px0 = pState;

    px1 = pState + S->M;


    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-4 coefficients. */
    while (tapCnt > 0U)
    {
      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
      c0 = *__SIMD32(pb)++;

      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
      x0 = *__SIMD32(px0)++;

      x1 = *__SIMD32(px1)++;

      /* Perform the multiply-accumulate */
      acc0 = __SMLAD(x0, c0, acc0);

      acc1 = __SMLAD(x1, c0, acc1);

      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
      c0 = *__SIMD32(pb)++;

      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
      x0 = *__SIMD32(px0)++;

      x1 = *__SIMD32(px1)++;

      /* Perform the multiply-accumulate */
      acc0 = __SMLAD(x0, c0, acc0);

      acc1 = __SMLAD(x1, c0, acc1);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Read coefficients */
      c0 = *pb++;

      /* Fetch 1 state variable */
      x0 = *px0++;

      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 = __SMLAD(x0, c0, acc0);
      acc1 = __SMLAD(x1, c0, acc1);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor
     * to process the next group of decimation factor number samples */
    pState = pState + S->M * 2;

    /* Store filter output, smlad returns the values in 2.14 format */
    /* so downsacle by 15 to get output in 1.15 */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));

    /* Decrement the loop counter */
    blkCnt--;
  }



  while (blkCntN3 > 0U)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while (--i);

    /*Set sum to zero */
    sum0 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-4 coefficients. */
    while (tapCnt > 0U)
    {
      /* Read the Read b[numTaps-1] and b[numTaps-2]  coefficients */
      c0 = *__SIMD32(pb)++;

      /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
      x0 = *__SIMD32(px)++;

      /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
      c1 = *__SIMD32(pb)++;

      /* Perform the multiply-accumulate */
      sum0 = __SMLAD(x0, c0, sum0);

      /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
      x0 = *__SIMD32(px)++;

      /* Perform the multiply-accumulate */
      sum0 = __SMLAD(x0, c1, sum0);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Read coefficients */
      c0 = *pb++;

      /* Fetch 1 state variable */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 = __SMLAD(x0, c0, sum0);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor
     * to process the next group of decimation factor number samples */
    pState = pState + S->M;

    /* Store filter output, smlad returns the values in 2.14 format */
    /* so downsacle by 15 to get output in 1.15 */
    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));

    /* Decrement the loop counter */
    blkCntN3--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  i = (numTaps - 1U) >> 2U;

  /* copy data */
  while (i > 0U)
  {
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;

    /* Decrement the loop counter */
    i--;
  }

  i = (numTaps - 1U) % 0x04U;

  /* copy data */
  while (i > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }
}

#else


void arm_fir_decimate_fast_q15(
  const arm_fir_decimate_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q15_t *px;                                     /* Temporary pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer coefficient buffer */
  q15_t x0, x1, c0;                              /* Temporary variables to hold state and coefficient values */
  q31_t sum0;                                    /* Accumulators */
  q31_t acc0, acc1;
  q15_t *px0, *px1;
  uint32_t blkCntN3;
  uint32_t numTaps = S->numTaps;                 /* Number of taps */
  uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M;  /* Loop counters */


  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + (numTaps - 1U);


  /* Total number of output samples to be computed */
  blkCnt = outBlockSize / 2;
  blkCntN3 = outBlockSize - (2 * blkCnt);

  while (blkCnt > 0U)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = 2 * S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while (--i);

    /* Set accumulator to zero */
    acc0 = 0;
    acc1 = 0;

    /* Initialize state pointer */
    px0 = pState;

    px1 = pState + S->M;


    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-4 coefficients. */
    while (tapCnt > 0U)
    {
      /* Read the Read b[numTaps-1] coefficients */
      c0 = *pb++;

      /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
      x0 = *px0++;
      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *pb++;

      /* Read x[n-numTaps-2] for sample 0 and sample 1 */
      x0 = *px0++;
      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;

      /* Read the b[numTaps-3]  coefficients */
      c0 = *pb++;

      /* Read x[n-numTaps-3] for sample 0 and sample 1 */
      x0 = *px0++;
      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *pb++;

      /* Read x[n-numTaps-4] for sample 0 and sample 1 */
      x0 = *px0++;
      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Read coefficients */
      c0 = *pb++;

      /* Fetch 1 state variable */
      x0 = *px0++;
      x1 = *px1++;

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor
     * to process the next group of decimation factor number samples */
    pState = pState + S->M * 2;

    /* Store filter output, smlad returns the values in 2.14 format */
    /* so downsacle by 15 to get output in 1.15 */

    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
    *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));


    /* Decrement the loop counter */
    blkCnt--;
  }

  while (blkCntN3 > 0U)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while (--i);

    /*Set sum to zero */
    sum0 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.
     ** Repeat until we've computed numTaps-4 coefficients. */
    while (tapCnt > 0U)
    {
      /* Read the Read b[numTaps-1] coefficients */
      c0 = *pb++;

      /* Read x[n-numTaps-1] and sample */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *pb++;

      /* Read x[n-numTaps-2] and  sample */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-3]  coefficients */
      c0 = *pb++;

      /* Read x[n-numTaps-3] sample */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *pb++;

      /* Read x[n-numTaps-4] sample */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4U;

    while (tapCnt > 0U)
    {
      /* Read coefficients */
      c0 = *pb++;

      /* Fetch 1 state variable */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor
     * to process the next group of decimation factor number samples */
    pState = pState + S->M;

    /* Store filter output, smlad returns the values in 2.14 format */
    /* so downsacle by 15 to get output in 1.15 */
    *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));

    /* Decrement the loop counter */
    blkCntN3--;
  }

  /* Processing is complete.
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  i = (numTaps - 1U) >> 2U;

  /* copy data */
  while (i > 0U)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }

  i = (numTaps - 1U) % 0x04U;

  /* copy data */
  while (i > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }
}


#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

/**
 * @} end of FIR_decimate group
 */