summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
blob: 906f7abf73afad2ae5011af746bbec54e59986c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_conv_f32.c
 * Description:  Convolution of floating-point sequences
 *
 * $Date:        27. January 2017
 * $Revision:    V.1.5.1
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupFilters
 */

/**
 * @defgroup Conv Convolution
 *
 * Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
 * Convolution is similar to correlation and is frequently used in filtering and data analysis.
 * The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
 * The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
 *
 * \par Algorithm
 * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
 * Then the convolution
 *
 * <pre>
 *                   c[n] = a[n] * b[n]
 * </pre>
 *
 * \par
 * is defined as
 * \image html ConvolutionEquation.gif
 * \par
 * Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
 * <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
 * <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
 * The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
 *
 * \par
 * Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
 * the signal <code>b[n]</code> slides over <code>a[n]</code>.
 * For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
 *
 * \par
 * Note that convolution is a commutative operation:
 *
 * <pre>
 *                   a[n] * b[n] = b[n] * a[n].
 * </pre>
 *
 * \par
 * This means that switching the A and B arguments to the convolution functions has no effect.
 *
 * <b>Fixed-Point Behavior</b>
 *
 * \par
 * Convolution requires summing up a large number of intermediate products.
 * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
 * Refer to the function specific documentation below for further details of the particular algorithm used.
 *
 *
 * <b>Fast Versions</b>
 *
 * \par
 * Fast versions are supported for Q31 and Q15.  Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
 * the input signals should be scaled down to avoid intermediate overflows.
 *
 *
 * <b>Opt Versions</b>
 *
 * \par
 * Opt versions are supported for Q15 and Q7.  Design uses internal scratch buffer for getting good optimisation.
 * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
 */

/**
 * @addtogroup Conv
 * @{
 */

/**
 * @brief Convolution of floating-point sequences.
 * @param[in] *pSrcA points to the first input sequence.
 * @param[in] srcALen length of the first input sequence.
 * @param[in] *pSrcB points to the second input sequence.
 * @param[in] srcBLen length of the second input sequence.
 * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.
 * @return none.
 */

void arm_conv_f32(
  float32_t * pSrcA,
  uint32_t srcALen,
  float32_t * pSrcB,
  uint32_t srcBLen,
  float32_t * pDst)
{


#if defined (ARM_MATH_DSP)

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t *pIn1;                               /* inputA pointer */
  float32_t *pIn2;                               /* inputB pointer */
  float32_t *pOut = pDst;                        /* output pointer */
  float32_t *px;                                 /* Intermediate inputA pointer */
  float32_t *py;                                 /* Intermediate inputB pointer */
  float32_t *pSrc1, *pSrc2;                      /* Intermediate pointers */
  float32_t sum, acc0, acc1, acc2, acc3;         /* Accumulator */
  float32_t x0, x1, x2, x3, c0;                  /* Temporary variables to hold state and coefficient values */
  uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3;     /* loop counters */

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  if (srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;
  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;
  }

  /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
  /* The function is internally
   * divided into three stages according to the number of multiplications that has to be
   * taken place between inputA samples and inputB samples. In the first stage of the
   * algorithm, the multiplications increase by one for every iteration.
   * In the second stage of the algorithm, srcBLen number of multiplications are done.
   * In the third stage of the algorithm, the multiplications decrease by one
   * for every iteration. */

  /* The algorithm is implemented in three stages.
     The loop counters of each stage is initiated here. */
  blockSize1 = srcBLen - 1U;
  blockSize2 = srcALen - (srcBLen - 1U);
  blockSize3 = blockSize1;

  /* --------------------------
   * initializations of stage1
   * -------------------------*/

  /* sum = x[0] * y[0]
   * sum = x[0] * y[1] + x[1] * y[0]
   * ....
   * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
   */

  /* In this stage the MAC operations are increased by 1 for every iteration.
     The count variable holds the number of MAC operations performed */
  count = 1U;

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  py = pIn2;


  /* ------------------------
   * Stage1 process
   * ----------------------*/

  /* The first stage starts here */
  while (blockSize1 > 0U)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = count >> 2U;

    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while (k > 0U)
    {
      /* x[0] * y[srcBLen - 1] */
      sum += *px++ * *py--;

      /* x[1] * y[srcBLen - 2] */
      sum += *px++ * *py--;

      /* x[2] * y[srcBLen - 3] */
      sum += *px++ * *py--;

      /* x[3] * y[srcBLen - 4] */
      sum += *px++ * *py--;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, compute any remaining MACs here.
     ** No loop unrolling is used. */
    k = count % 0x4U;

    while (k > 0U)
    {
      /* Perform the multiply-accumulate */
      sum += *px++ * *py--;

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut++ = sum;

    /* Update the inputA and inputB pointers for next MAC calculation */
    py = pIn2 + count;
    px = pIn1;

    /* Increment the MAC count */
    count++;

    /* Decrement the loop counter */
    blockSize1--;
  }

  /* --------------------------
   * Initializations of stage2
   * ------------------------*/

  /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
   * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
   * ....
   * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
   */

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  pSrc2 = pIn2 + (srcBLen - 1U);
  py = pSrc2;

  /* count is index by which the pointer pIn1 to be incremented */
  count = 0U;

  /* -------------------
   * Stage2 process
   * ------------------*/

  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
   * So, to loop unroll over blockSize2,
   * srcBLen should be greater than or equal to 4 */
  if (srcBLen >= 4U)
  {
    /* Loop unroll over blockSize2, by 4 */
    blkCnt = blockSize2 >> 2U;

    while (blkCnt > 0U)
    {
      /* Set all accumulators to zero */
      acc0 = 0.0f;
      acc1 = 0.0f;
      acc2 = 0.0f;
      acc3 = 0.0f;

      /* read x[0], x[1], x[2] samples */
      x0 = *(px++);
      x1 = *(px++);
      x2 = *(px++);

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2U;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      do
      {
        /* Read y[srcBLen - 1] sample */
        c0 = *(py--);

        /* Read x[3] sample */
        x3 = *(px);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[0] * y[srcBLen - 1] */
        acc0 += x0 * c0;

        /* acc1 +=  x[1] * y[srcBLen - 1] */
        acc1 += x1 * c0;

        /* acc2 +=  x[2] * y[srcBLen - 1] */
        acc2 += x2 * c0;

        /* acc3 +=  x[3] * y[srcBLen - 1] */
        acc3 += x3 * c0;

        /* Read y[srcBLen - 2] sample */
        c0 = *(py--);

        /* Read x[4] sample */
        x0 = *(px + 1U);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[1] * y[srcBLen - 2] */
        acc0 += x1 * c0;
        /* acc1 +=  x[2] * y[srcBLen - 2] */
        acc1 += x2 * c0;
        /* acc2 +=  x[3] * y[srcBLen - 2] */
        acc2 += x3 * c0;
        /* acc3 +=  x[4] * y[srcBLen - 2] */
        acc3 += x0 * c0;

        /* Read y[srcBLen - 3] sample */
        c0 = *(py--);

        /* Read x[5] sample */
        x1 = *(px + 2U);

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[2] * y[srcBLen - 3] */
        acc0 += x2 * c0;
        /* acc1 +=  x[3] * y[srcBLen - 2] */
        acc1 += x3 * c0;
        /* acc2 +=  x[4] * y[srcBLen - 2] */
        acc2 += x0 * c0;
        /* acc3 +=  x[5] * y[srcBLen - 2] */
        acc3 += x1 * c0;

        /* Read y[srcBLen - 4] sample */
        c0 = *(py--);

        /* Read x[6] sample */
        x2 = *(px + 3U);
        px += 4U;

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[3] * y[srcBLen - 4] */
        acc0 += x3 * c0;
        /* acc1 +=  x[4] * y[srcBLen - 4] */
        acc1 += x0 * c0;
        /* acc2 +=  x[5] * y[srcBLen - 4] */
        acc2 += x1 * c0;
        /* acc3 +=  x[6] * y[srcBLen - 4] */
        acc3 += x2 * c0;


      } while (--k);

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
       ** No loop unrolling is used. */
      k = srcBLen % 0x4U;

      while (k > 0U)
      {
        /* Read y[srcBLen - 5] sample */
        c0 = *(py--);

        /* Read x[7] sample */
        x3 = *(px++);

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[4] * y[srcBLen - 5] */
        acc0 += x0 * c0;
        /* acc1 +=  x[5] * y[srcBLen - 5] */
        acc1 += x1 * c0;
        /* acc2 +=  x[6] * y[srcBLen - 5] */
        acc2 += x2 * c0;
        /* acc3 +=  x[7] * y[srcBLen - 5] */
        acc3 += x3 * c0;

        /* Reuse the present samples for the next MAC */
        x0 = x1;
        x1 = x2;
        x2 = x3;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = acc0;
      *pOut++ = acc1;
      *pOut++ = acc2;
      *pOut++ = acc3;

      /* Increment the pointer pIn1 index, count by 4 */
      count += 4U;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pSrc2;


      /* Decrement the loop counter */
      blkCnt--;
    }


    /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
     ** No loop unrolling is used. */
    blkCnt = blockSize2 % 0x4U;

    while (blkCnt > 0U)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2U;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      while (k > 0U)
      {
        /* Perform the multiply-accumulates */
        sum += *px++ * *py--;
        sum += *px++ * *py--;
        sum += *px++ * *py--;
        sum += *px++ * *py--;

        /* Decrement the loop counter */
        k--;
      }

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
       ** No loop unrolling is used. */
      k = srcBLen % 0x4U;

      while (k > 0U)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py--;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = sum;

      /* Increment the MAC count */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pSrc2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }
  else
  {
    /* If the srcBLen is not a multiple of 4,
     * the blockSize2 loop cannot be unrolled by 4 */
    blkCnt = blockSize2;

    while (blkCnt > 0U)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

      /* srcBLen number of MACS should be performed */
      k = srcBLen;

      while (k > 0U)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py--;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = sum;

      /* Increment the MAC count */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pSrc2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }


  /* --------------------------
   * Initializations of stage3
   * -------------------------*/

  /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
   * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
   * ....
   * sum +=  x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
   * sum +=  x[srcALen-1] * y[srcBLen-1]
   */

  /* In this stage the MAC operations are decreased by 1 for every iteration.
     The blockSize3 variable holds the number of MAC operations performed */

  /* Working pointer of inputA */
  pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
  px = pSrc1;

  /* Working pointer of inputB */
  pSrc2 = pIn2 + (srcBLen - 1U);
  py = pSrc2;

  /* -------------------
   * Stage3 process
   * ------------------*/

  while (blockSize3 > 0U)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = blockSize3 >> 2U;

    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while (k > 0U)
    {
      /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
      sum += *px++ * *py--;

      /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
      sum += *px++ * *py--;

      /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
      sum += *px++ * *py--;

      /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
      sum += *px++ * *py--;

      /* Decrement the loop counter */
      k--;
    }

    /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
     ** No loop unrolling is used. */
    k = blockSize3 % 0x4U;

    while (k > 0U)
    {
      /* Perform the multiply-accumulates */
      /* sum +=  x[srcALen-1] * y[srcBLen-1] */
      sum += *px++ * *py--;

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut++ = sum;

    /* Update the inputA and inputB pointers for next MAC calculation */
    px = ++pSrc1;
    py = pSrc2;

    /* Decrement the loop counter */
    blockSize3--;
  }

#else

  /* Run the below code for Cortex-M0 */

  float32_t *pIn1 = pSrcA;                       /* inputA pointer */
  float32_t *pIn2 = pSrcB;                       /* inputB pointer */
  float32_t sum;                                 /* Accumulator */
  uint32_t i, j;                                 /* loop counters */

  /* Loop to calculate convolution for output length number of times */
  for (i = 0U; i < ((srcALen + srcBLen) - 1U); i++)
  {
    /* Initialize sum with zero to carry out MAC operations */
    sum = 0.0f;

    /* Loop to perform MAC operations according to convolution equation */
    for (j = 0U; j <= i; j++)
    {
      /* Check the array limitations */
      if ((((i - j) < srcBLen) && (j < srcALen)))
      {
        /* z[i] += x[i-j] * y[j] */
        sum += pIn1[j] * pIn2[i - j];
      }
    }
    /* Store the output in the destination buffer */
    pDst[i] = sum;
  }

#endif /*   #if defined (ARM_MATH_DSP)        */

}

/**
 * @} end of Conv group
 */