summaryrefslogtreecommitdiff
path: root/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/TransformFunctions/rfft.c
blob: 79738f0ab2a1ebb495f7fcc955a108556030e066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "ref.h"	
#include "arm_const_structs.h"
	
void ref_rfft_f32(
	arm_rfft_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst)
{
	uint32_t i;
	
	if (S->ifftFlagR)
	{
		for(i=0;i<S->fftLenReal*2;i++)
		{
			pDst[i] = pSrc[i];
		}
	}
	else
	{
		for(i=0;i<S->fftLenReal;i++)
		{
			pDst[2*i+0] = pSrc[i];
			pDst[2*i+1] = 0.0f;
		}
	}
	
	switch(S->fftLenReal)
	{   
   case 128: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len128, pDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 512: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len512, pDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 2048: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len2048, pDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 8192: 
		 ref_cfft_f32(&ref_cfft_sR_f32_len8192, pDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	}
	
	if (S->ifftFlagR)
	{
		//throw away the imaginary part which should be all zeros
		for(i=0;i<S->fftLenReal;i++)
		{
			pDst[i] = pDst[2*i];
		}
	}
}
	
void ref_rfft_fast_f32(
	arm_rfft_fast_instance_f32 * S,
	float32_t * p, float32_t * pOut,
	uint8_t ifftFlag)
{
	uint32_t i,j;
	
	if (ifftFlag)
	{
		for(i=0;i<S->fftLenRFFT;i++)
		{
			pOut[i] = p[i];
		}
		//unpack first sample's complex part into middle sample's real part
		pOut[S->fftLenRFFT] = pOut[1];
		pOut[S->fftLenRFFT+1] = 0;
		pOut[1] = 0;
		j=4;
		for(i = S->fftLenRFFT / 2 + 1;i < S->fftLenRFFT;i++)
		{
			pOut[2*i+0] = p[2*i+0 - j];
			pOut[2*i+1] = -p[2*i+1 - j];
			j+=4;
		}
	}
	else
	{
		for(i=0;i<S->fftLenRFFT;i++)
		{
			pOut[2*i+0] = p[i];
			pOut[2*i+1] = 0.0f;
		}
	}
	
	switch(S->fftLenRFFT)
	{   
   case 32: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len32, pOut, ifftFlag, 1);
		 break;
   
   case 64: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len64, pOut, ifftFlag, 1);
		 break;
   
   case 128: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len128, pOut, ifftFlag, 1);
		 break;
   
   case 256: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len256, pOut, ifftFlag, 1);
		 break;
   
   case 512: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len512, pOut, ifftFlag, 1);
		 break;
   
   case 1024: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len1024, pOut, ifftFlag, 1);
		 break;
   
   case 2048: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len2048, pOut, ifftFlag, 1);
		 break;
   
   case 4096: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len4096, pOut, ifftFlag, 1);
		 break;
	}
	
	if (ifftFlag)
	{
		//throw away the imaginary part which should be all zeros
		for(i=0;i<S->fftLenRFFT;i++)
		{
			pOut[i] = pOut[2*i];
		}
	}
	else
	{
		//pack last sample's real part into first sample's complex part
		pOut[1] = pOut[S->fftLenRFFT];
	}
}
	
void ref_rfft_q31(
  const arm_rfft_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst)
{
	uint32_t i;
	float32_t *fDst = (float32_t*)pDst;
	
	if (S->ifftFlagR)
	{
		for(i=0;i<S->fftLenReal*2;i++)
		{
			fDst[i] = (float32_t)pSrc[i] / 2147483648.0f;
		}
	}
	else
	{
		for(i=0;i<S->fftLenReal;i++)
		{
			fDst[2*i+0] = (float32_t)pSrc[i] / 2147483648.0f;
			fDst[2*i+1] = 0.0f;
		}
	}
	
	switch(S->fftLenReal)
	{
   case 32: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len32, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 64: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len64, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 128: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len128, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 256: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len256, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 512: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len512, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 1024: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len1024, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 2048: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len2048, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 4096: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len4096, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 8192: 
		 ref_cfft_f32(&ref_cfft_sR_f32_len8192, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	}
	
	if (S->ifftFlagR)
	{
		//throw away the imaginary part which should be all zeros		
		for(i=0;i<S->fftLenReal;i++)
		{
			//read the float data, scale up for q31, cast to q31
			pDst[i] = (q31_t)( fDst[2*i] * 2147483648.0f);
		}
	}
	else
	{
		for(i=0;i<S->fftLenReal;i++)
		{
			//read the float data, scale up for q31, cast to q31
			pDst[i] = (q31_t)( fDst[i] * 2147483648.0f / (float32_t)S->fftLenReal);
		}
	}
}

void ref_rfft_q15(
  const arm_rfft_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst)
{
	uint32_t i;
	float32_t *fDst = (float32_t*)pDst;
	
	
	if (S->ifftFlagR)
	{
		for(i=0;i<S->fftLenReal*2;i++)
		{
			fDst[i] = (float32_t)pSrc[i] / 32768.0f;
		}
	}
	else
	{
		for(i=0;i<S->fftLenReal;i++)
		{
			//read the q15 data, cast to float, scale down for float
			fDst[2*i+0] = (float32_t)pSrc[i] / 32768.0f;
			fDst[2*i+1] = 0.0f;
		}
	}
	
	switch(S->fftLenReal)
	{   
   case 32: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len32, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 64: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len64, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 128: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len128, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 256: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len256, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 512: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len512, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	 
   case 1024: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len1024, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 2048: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len2048, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 4096: 
		 ref_cfft_f32(&arm_cfft_sR_f32_len4096, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
   
   case 8192: 
		 ref_cfft_f32(&ref_cfft_sR_f32_len8192, fDst, S->ifftFlagR, S->bitReverseFlagR);
		 break;
	}
	
	if (S->ifftFlagR)
	{
		//throw away the imaginary part which should be all zeros
		for(i=0;i<S->fftLenReal;i++)
		{
			pDst[i] = (q15_t)( fDst[2*i] * 32768.0f);
		}
	}
	else
	{
		for(i=0;i<S->fftLenReal;i++)
		{
			pDst[i] = (q15_t)( fDst[i] * 32768.0f / (float32_t)S->fftLenReal);
		}
	}
}