1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_scale_q31.c
* Description: Multiplies a Q31 matrix by a scalar
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixScale
* @{
*/
/**
* @brief Q31 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
arm_status arm_mat_scale_q31(
const arm_matrix_instance_q31 * pSrc,
q31_t scaleFract,
int32_t shift,
arm_matrix_instance_q31 * pDst)
{
q31_t *pIn = pSrc->pData; /* input data matrix pointer */
q31_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
int32_t totShift = shift + 1; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counters */
arm_status status; /* status of matrix scaling */
q31_t in1, in2, out1; /* temporary variabels */
#if defined (ARM_MATH_DSP)
q31_t in3, in4, out2, out3, out4; /* temporary variables */
#endif // #ifndef ARM_MAT_CM0
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch */
if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif // #ifdef ARM_MATH_MATRIX_CHECK
{
/* Total number of samples in the input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop Unrolling */
blkCnt = numSamples >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
/* Read values from input */
in1 = *pIn;
in2 = *(pIn + 1);
in3 = *(pIn + 2);
in4 = *(pIn + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 << totShift;
out2 = in2 << totShift;
/* saturate the results. */
if (in1 != (out1 >> totShift))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if (in2 != (out2 >> totShift))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
out3 = in3 << totShift;
out4 = in4 << totShift;
*pOut = out1;
*(pOut + 1) = out2;
if (in3 != (out3 >> totShift))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if (in4 != (out4 >> totShift))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
*(pOut + 2) = out3;
*(pOut + 3) = out4;
/* update pointers to process next sampels */
pIn += 4U;
pOut += 4U;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4U;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_DSP) */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and then store the results in the destination buffer. */
in1 = *pIn++;
in2 = ((q63_t) in1 * scaleFract) >> 32;
out1 = in2 << totShift;
if (in2 != (out1 >> totShift))
out1 = 0x7FFFFFFF ^ (in2 >> 31);
*pOut++ = out1;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixScale group
*/
|