diff options
Diffstat (limited to 'hid-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c')
-rw-r--r-- | hid-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c | 6767 |
1 files changed, 0 insertions, 6767 deletions
diff --git a/hid-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c b/hid-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c deleted file mode 100644 index 24648d1..0000000 --- a/hid-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c +++ /dev/null @@ -1,6767 +0,0 @@ -/**
- ******************************************************************************
- * @file stm32f0xx_hal_tim.c
- * @author MCD Application Team
- * @brief TIM HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Timer (TIM) peripheral:
- * + TIM Time Base Initialization
- * + TIM Time Base Start
- * + TIM Time Base Start Interruption
- * + TIM Time Base Start DMA
- * + TIM Output Compare/PWM Initialization
- * + TIM Output Compare/PWM Channel Configuration
- * + TIM Output Compare/PWM Start
- * + TIM Output Compare/PWM Start Interruption
- * + TIM Output Compare/PWM Start DMA
- * + TIM Input Capture Initialization
- * + TIM Input Capture Channel Configuration
- * + TIM Input Capture Start
- * + TIM Input Capture Start Interruption
- * + TIM Input Capture Start DMA
- * + TIM One Pulse Initialization
- * + TIM One Pulse Channel Configuration
- * + TIM One Pulse Start
- * + TIM Encoder Interface Initialization
- * + TIM Encoder Interface Start
- * + TIM Encoder Interface Start Interruption
- * + TIM Encoder Interface Start DMA
- * + Commutation Event configuration with Interruption and DMA
- * + TIM OCRef clear configuration
- * + TIM External Clock configuration
- @verbatim
- ==============================================================================
- ##### TIMER Generic features #####
- ==============================================================================
- [..] The Timer features include:
- (#) 16-bit up, down, up/down auto-reload counter.
- (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
- counter clock frequency either by any factor between 1 and 65536.
- (#) Up to 4 independent channels for:
- (++) Input Capture
- (++) Output Compare
- (++) PWM generation (Edge and Center-aligned Mode)
- (++) One-pulse mode output
- (#) Synchronization circuit to control the timer with external signals and to interconnect
- several timers together.
- (#) Supports incremental encoder for positioning purposes
-
- ##### How to use this driver #####
- ==============================================================================
- [..]
- (#) Initialize the TIM low level resources by implementing the following functions
- depending on the selected feature:
- (++) Time Base : HAL_TIM_Base_MspInit()
- (++) Input Capture : HAL_TIM_IC_MspInit()
- (++) Output Compare : HAL_TIM_OC_MspInit()
- (++) PWM generation : HAL_TIM_PWM_MspInit()
- (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
- (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
-
- (#) Initialize the TIM low level resources :
- (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
- (##) TIM pins configuration
- (+++) Enable the clock for the TIM GPIOs using the following function:
- __HAL_RCC_GPIOx_CLK_ENABLE();
- (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
-
- (#) The external Clock can be configured, if needed (the default clock is the
- internal clock from the APBx), using the following function:
- HAL_TIM_ConfigClockSource, the clock configuration should be done before
- any start function.
-
- (#) Configure the TIM in the desired functioning mode using one of the
- Initialization function of this driver:
- (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
- (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
- Output Compare signal.
- (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
- PWM signal.
- (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
- external signal.
- (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
- in One Pulse Mode.
- (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
-
- (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
- (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
- (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
- (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
- (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
- (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
- (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
-
- (#) The DMA Burst is managed with the two following functions:
- HAL_TIM_DMABurst_WriteStart()
- HAL_TIM_DMABurst_ReadStart()
-
- *** Callback registration ***
- =============================================
-
- [..]
- The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
- allows the user to configure dynamically the driver callbacks.
-
- [..]
- Use Function @ref HAL_TIM_RegisterCallback() to register a callback.
- @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
- the Callback ID and a pointer to the user callback function.
-
- [..]
- Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default
- weak function.
- @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
- and the Callback ID.
-
- [..]
- These functions allow to register/unregister following callbacks:
- (+) Base_MspInitCallback : TIM Base Msp Init Callback.
- (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
- (+) IC_MspInitCallback : TIM IC Msp Init Callback.
- (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
- (+) OC_MspInitCallback : TIM OC Msp Init Callback.
- (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
- (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
- (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
- (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
- (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
- (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
- (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
- (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
- (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
- (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
- (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
- (+) TriggerCallback : TIM Trigger Callback.
- (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
- (+) IC_CaptureCallback : TIM Input Capture Callback.
- (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
- (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
- (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
- (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
- (+) ErrorCallback : TIM Error Callback.
- (+) CommutationCallback : TIM Commutation Callback.
- (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
- (+) BreakCallback : TIM Break Callback.
-
- [..]
-By default, after the Init and when the state is HAL_TIM_STATE_RESET
-all interrupt callbacks are set to the corresponding weak functions:
- examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback().
-
- [..]
- Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
- functionalities in the Init / DeInit only when these callbacks are null
- (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
- keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
-
- [..]
- Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
- Exception done MspInit / MspDeInit that can be registered / unregistered
- in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
- thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
- In that case first register the MspInit/MspDeInit user callbacks
- using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function.
-
- [..]
- When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
- not defined, the callback registration feature is not available and all callbacks
- are set to the corresponding weak functions.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>© Copyright (c) 2016 STMicroelectronics.
- * All rights reserved.</center></h2>
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f0xx_hal.h"
-
-/** @addtogroup STM32F0xx_HAL_Driver
- * @{
- */
-
-/** @defgroup TIM TIM
- * @brief TIM HAL module driver
- * @{
- */
-
-#ifdef HAL_TIM_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @addtogroup TIM_Private_Functions
- * @{
- */
-static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter);
-static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
-static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
-static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
-static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
-static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
-static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef *sSlaveConfig);
-/**
- * @}
- */
-/* Exported functions --------------------------------------------------------*/
-
-/** @defgroup TIM_Exported_Functions TIM Exported Functions
- * @{
- */
-
-/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
- * @brief Time Base functions
- *
-@verbatim
- ==============================================================================
- ##### Time Base functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM base.
- (+) De-initialize the TIM base.
- (+) Start the Time Base.
- (+) Stop the Time Base.
- (+) Start the Time Base and enable interrupt.
- (+) Stop the Time Base and disable interrupt.
- (+) Start the Time Base and enable DMA transfer.
- (+) Stop the Time Base and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Time base Unit according to the specified
- * parameters in the TIM_HandleTypeDef and initialize the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->Base_MspInitCallback == NULL)
- {
- htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->Base_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- HAL_TIM_Base_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Set the Time Base configuration */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM Base peripheral
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->Base_MspDeInitCallback == NULL)
- {
- htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->Base_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_Base_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Base MSP.
- * @param htim TIM Base handle
- * @retval None
- */
-__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_Base_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Base MSP.
- * @param htim TIM Base handle
- * @retval None
- */
-__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_Base_MspDeInit could be implemented in the user file
- */
-}
-
-
-/**
- * @brief Starts the TIM Base generation.
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Change the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation.
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Base generation in interrupt mode.
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- /* Enable the TIM Update interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation in interrupt mode.
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- /* Disable the TIM Update interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Base generation in DMA mode.
- * @param htim TIM Base handle
- * @param pData The source Buffer address.
- * @param Length The length of data to be transferred from memory to peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((pData == NULL) && (Length > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
-
- /* Set the DMA Period elapsed callbacks */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
- htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /* Enable the TIM Update DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Base generation in DMA mode.
- * @param htim TIM Base handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
-
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
-
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
- * @brief TIM Output Compare functions
- *
-@verbatim
- ==============================================================================
- ##### TIM Output Compare functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Output Compare.
- (+) De-initialize the TIM Output Compare.
- (+) Start the TIM Output Compare.
- (+) Stop the TIM Output Compare.
- (+) Start the TIM Output Compare and enable interrupt.
- (+) Stop the TIM Output Compare and disable interrupt.
- (+) Start the TIM Output Compare and enable DMA transfer.
- (+) Stop the TIM Output Compare and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Output Compare according to the specified
- * parameters in the TIM_HandleTypeDef and initializes the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
- * @param htim TIM Output Compare handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->OC_MspInitCallback == NULL)
- {
- htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->OC_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OC_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the Output Compare */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim TIM Output Compare handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->OC_MspDeInitCallback == NULL)
- {
- htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->OC_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OC_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Output Compare MSP.
- * @param htim TIM Output Compare handle
- * @retval None
- */
-__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_OC_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Output Compare MSP.
- * @param htim TIM Output Compare handle
- * @retval None
- */
-__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_OC_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in interrupt mode.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in interrupt mode.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Output Compare signal generation in DMA mode.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData The source Buffer address.
- * @param Length The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((pData == NULL) && (Length > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Enable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Output Compare signal generation in DMA mode.
- * @param htim TIM Output Compare handle
- * @param Channel TIM Channel to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Output compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
- * @brief TIM PWM functions
- *
-@verbatim
- ==============================================================================
- ##### TIM PWM functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM PWM.
- (+) De-initialize the TIM PWM.
- (+) Start the TIM PWM.
- (+) Stop the TIM PWM.
- (+) Start the TIM PWM and enable interrupt.
- (+) Stop the TIM PWM and disable interrupt.
- (+) Start the TIM PWM and enable DMA transfer.
- (+) Stop the TIM PWM and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM PWM Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and initializes the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
- * @param htim TIM PWM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->PWM_MspInitCallback == NULL)
- {
- htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->PWM_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_PWM_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the PWM */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim TIM PWM handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->PWM_MspDeInitCallback == NULL)
- {
- htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->PWM_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_PWM_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM PWM MSP.
- * @param htim TIM PWM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PWM_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM PWM MSP.
- * @param htim TIM PWM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PWM_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the PWM signal generation.
- * @param htim TIM handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation.
- * @param htim TIM PWM handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the PWM signal generation in interrupt mode.
- * @param htim TIM PWM handle
- * @param Channel TIM Channel to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the PWM signal generation in interrupt mode.
- * @param htim TIM PWM handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM PWM signal generation in DMA mode.
- * @param htim TIM PWM handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData The source Buffer address.
- * @param Length The length of data to be transferred from memory to TIM peripheral
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((pData == NULL) && (Length > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Output Capture/Compare 3 request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM PWM signal generation in DMA mode.
- * @param htim TIM PWM handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
- * @brief TIM Input Capture functions
- *
-@verbatim
- ==============================================================================
- ##### TIM Input Capture functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Input Capture.
- (+) De-initialize the TIM Input Capture.
- (+) Start the TIM Input Capture.
- (+) Stop the TIM Input Capture.
- (+) Start the TIM Input Capture and enable interrupt.
- (+) Stop the TIM Input Capture and disable interrupt.
- (+) Start the TIM Input Capture and enable DMA transfer.
- (+) Stop the TIM Input Capture and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Input Capture Time base according to the specified
- * parameters in the TIM_HandleTypeDef and initializes the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
- * @param htim TIM Input Capture handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
-{
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->IC_MspInitCallback == NULL)
- {
- htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->IC_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_IC_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Init the base time for the input capture */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM peripheral
- * @param htim TIM Input Capture handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->IC_MspDeInitCallback == NULL)
- {
- htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->IC_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_IC_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Input Capture MSP.
- * @param htim TIM Input Capture handle
- * @retval None
- */
-__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_IC_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Input Capture MSP.
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_IC_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement in interrupt mode.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Enable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Enable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement in interrupt mode.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Input Capture measurement in DMA mode.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData The destination Buffer address.
- * @param Length The length of data to be transferred from TIM peripheral to memory.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
-{
- uint32_t tmpsmcr;
-
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((pData == NULL) && (Length > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- break;
- }
-
- default:
- break;
- }
-
- /* Enable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
-
- /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
- tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
- if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
- {
- __HAL_TIM_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Input Capture measurement in DMA mode.
- * @param htim TIM Input Capture handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Disable the TIM Capture/Compare 1 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Disable the TIM Capture/Compare 2 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Disable the TIM Capture/Compare 3 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Disable the TIM Capture/Compare 4 DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
- break;
- }
-
- default:
- break;
- }
-
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
- * @brief TIM One Pulse functions
- *
-@verbatim
- ==============================================================================
- ##### TIM One Pulse functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM One Pulse.
- (+) De-initialize the TIM One Pulse.
- (+) Start the TIM One Pulse.
- (+) Stop the TIM One Pulse.
- (+) Start the TIM One Pulse and enable interrupt.
- (+) Stop the TIM One Pulse and disable interrupt.
- (+) Start the TIM One Pulse and enable DMA transfer.
- (+) Stop the TIM One Pulse and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM One Pulse Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and initializes the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
- * @param htim TIM One Pulse handle
- * @param OnePulseMode Select the One pulse mode.
- * This parameter can be one of the following values:
- * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
- * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
-{
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_OPM_MODE(OnePulseMode));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->OnePulse_MspInitCallback == NULL)
- {
- htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->OnePulse_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_OnePulse_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Configure the Time base in the One Pulse Mode */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Reset the OPM Bit */
- htim->Instance->CR1 &= ~TIM_CR1_OPM;
-
- /* Configure the OPM Mode */
- htim->Instance->CR1 |= OnePulseMode;
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief DeInitializes the TIM One Pulse
- * @param htim TIM One Pulse handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->OnePulse_MspDeInitCallback == NULL)
- {
- htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->OnePulse_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_OnePulse_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM One Pulse MSP.
- * @param htim TIM One Pulse handle
- * @retval None
- */
-__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_OnePulse_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM One Pulse MSP.
- * @param htim TIM One Pulse handle
- * @retval None
- */
-__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM One Pulse signal generation.
- * @param htim TIM One Pulse handle
- * @param OutputChannel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(OutputChannel);
-
- /* Enable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
-
- No need to enable the counter, it's enabled automatically by hardware
- (the counter starts in response to a stimulus and generate a pulse */
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM One Pulse signal generation.
- * @param htim TIM One Pulse handle
- * @param OutputChannel TIM Channels to be disable
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(OutputChannel);
-
- /* Disable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM One Pulse signal generation in interrupt mode.
- * @param htim TIM One Pulse handle
- * @param OutputChannel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(OutputChannel);
-
- /* Enable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
-
- No need to enable the counter, it's enabled automatically by hardware
- (the counter starts in response to a stimulus and generate a pulse */
-
- /* Enable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
-
- /* Enable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
-
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Enable the main output */
- __HAL_TIM_MOE_ENABLE(htim);
- }
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM One Pulse signal generation in interrupt mode.
- * @param htim TIM One Pulse handle
- * @param OutputChannel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(OutputChannel);
-
- /* Disable the TIM Capture/Compare 1 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
-
- /* Disable the TIM Capture/Compare 2 interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
-
- /* Disable the Capture compare and the Input Capture channels
- (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
- if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
- if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
- in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
- {
- /* Disable the Main Output */
- __HAL_TIM_MOE_DISABLE(htim);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
- * @brief TIM Encoder functions
- *
-@verbatim
- ==============================================================================
- ##### TIM Encoder functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Initialize and configure the TIM Encoder.
- (+) De-initialize the TIM Encoder.
- (+) Start the TIM Encoder.
- (+) Stop the TIM Encoder.
- (+) Start the TIM Encoder and enable interrupt.
- (+) Stop the TIM Encoder and disable interrupt.
- (+) Start the TIM Encoder and enable DMA transfer.
- (+) Stop the TIM Encoder and disable DMA transfer.
-
-@endverbatim
- * @{
- */
-/**
- * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
- * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
- * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
- * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
- * @param htim TIM Encoder Interface handle
- * @param sConfig TIM Encoder Interface configuration structure
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig)
-{
- uint32_t tmpsmcr;
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Check the TIM handle allocation */
- if (htim == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
- assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
- assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
- assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
- assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
- assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
- assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
- assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
-
- if (htim->State == HAL_TIM_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- htim->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- /* Reset interrupt callbacks to legacy weak callbacks */
- TIM_ResetCallback(htim);
-
- if (htim->Encoder_MspInitCallback == NULL)
- {
- htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
- }
- /* Init the low level hardware : GPIO, CLOCK, NVIC */
- htim->Encoder_MspInitCallback(htim);
-#else
- /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
- HAL_TIM_Encoder_MspInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
-
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Reset the SMS and ECE bits */
- htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
-
- /* Configure the Time base in the Encoder Mode */
- TIM_Base_SetConfig(htim->Instance, &htim->Init);
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = htim->Instance->SMCR;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmr1 = htim->Instance->CCMR1;
-
- /* Get the TIMx CCER register value */
- tmpccer = htim->Instance->CCER;
-
- /* Set the encoder Mode */
- tmpsmcr |= sConfig->EncoderMode;
-
- /* Select the Capture Compare 1 and the Capture Compare 2 as input */
- tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
- tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
-
- /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
- tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
- tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
- tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
- tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
-
- /* Set the TI1 and the TI2 Polarities */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
- tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
- tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
-
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
-
- /* Write to TIMx CCMR1 */
- htim->Instance->CCMR1 = tmpccmr1;
-
- /* Write to TIMx CCER */
- htim->Instance->CCER = tmpccer;
-
- /* Initialize the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
-
- return HAL_OK;
-}
-
-
-/**
- * @brief DeInitializes the TIM Encoder interface
- * @param htim TIM Encoder Interface handle
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Disable the TIM Peripheral Clock */
- __HAL_TIM_DISABLE(htim);
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- if (htim->Encoder_MspDeInitCallback == NULL)
- {
- htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
- }
- /* DeInit the low level hardware */
- htim->Encoder_MspDeInitCallback(htim);
-#else
- /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
- HAL_TIM_Encoder_MspDeInit(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- /* Change TIM state */
- htim->State = HAL_TIM_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Encoder Interface MSP.
- * @param htim TIM Encoder Interface handle
- * @retval None
- */
-__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_Encoder_MspInit could be implemented in the user file
- */
-}
-
-/**
- * @brief DeInitializes TIM Encoder Interface MSP.
- * @param htim TIM Encoder Interface handle
- * @retval None
- */
-__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
- */
-}
-
-/**
- * @brief Starts the TIM Encoder Interface.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Enable the encoder interface channels */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- break;
- }
-
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- break;
- }
- }
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
- break;
- }
-
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
- break;
- }
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Encoder Interface in interrupt mode.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Enable the encoder interface channels */
- /* Enable the capture compare Interrupts 1 and/or 2 */
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
-
- default :
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- break;
- }
- }
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface in interrupt mode.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be disabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- if (Channel == TIM_CHANNEL_1)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 1 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- }
- else if (Channel == TIM_CHANNEL_2)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 2 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
- else
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare Interrupts 1 and 2 */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Starts the TIM Encoder Interface in DMA mode.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @param pData1 The destination Buffer address for IC1.
- * @param pData2 The destination Buffer address for IC2.
- * @param Length The length of data to be transferred from TIM peripheral to memory.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
- uint32_t *pData2, uint16_t Length)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
-
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- break;
- }
-
- case TIM_CHANNEL_ALL:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK)
- {
- return HAL_ERROR;
- }
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Enable the Capture compare channel */
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
-
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- /* Enable the TIM Input Capture DMA request */
- __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- break;
- }
-
- default:
- break;
- }
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM Encoder Interface in DMA mode.
- * @param htim TIM Encoder Interface handle
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
-
- /* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
- if (Channel == TIM_CHANNEL_1)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 1 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- }
- else if (Channel == TIM_CHANNEL_2)
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 2 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- }
- else
- {
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
- TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
-
- /* Disable the capture compare DMA Request 1 and 2 */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- }
-
- /* Disable the Peripheral */
- __HAL_TIM_DISABLE(htim);
-
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @}
- */
-/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
- * @brief TIM IRQ handler management
- *
-@verbatim
- ==============================================================================
- ##### IRQ handler management #####
- ==============================================================================
- [..]
- This section provides Timer IRQ handler function.
-
-@endverbatim
- * @{
- */
-/**
- * @brief This function handles TIM interrupts requests.
- * @param htim TIM handle
- * @retval None
- */
-void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
-{
- /* Capture compare 1 event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
- {
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
-
- /* Input capture event */
- if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureCallback(htim);
-#else
- HAL_TIM_IC_CaptureCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- /* Output compare event */
- else
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->OC_DelayElapsedCallback(htim);
- htim->PWM_PulseFinishedCallback(htim);
-#else
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- }
- /* Capture compare 2 event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- /* Input capture event */
- if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureCallback(htim);
-#else
- HAL_TIM_IC_CaptureCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- /* Output compare event */
- else
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->OC_DelayElapsedCallback(htim);
- htim->PWM_PulseFinishedCallback(htim);
-#else
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* Capture compare 3 event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- /* Input capture event */
- if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureCallback(htim);
-#else
- HAL_TIM_IC_CaptureCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- /* Output compare event */
- else
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->OC_DelayElapsedCallback(htim);
- htim->PWM_PulseFinishedCallback(htim);
-#else
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* Capture compare 4 event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- /* Input capture event */
- if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureCallback(htim);
-#else
- HAL_TIM_IC_CaptureCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- /* Output compare event */
- else
- {
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->OC_DelayElapsedCallback(htim);
- htim->PWM_PulseFinishedCallback(htim);
-#else
- HAL_TIM_OC_DelayElapsedCallback(htim);
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
- }
- }
- /* TIM Update event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->PeriodElapsedCallback(htim);
-#else
- HAL_TIM_PeriodElapsedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- }
- /* TIM Break input event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->BreakCallback(htim);
-#else
- HAL_TIMEx_BreakCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- }
- /* TIM Trigger detection event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->TriggerCallback(htim);
-#else
- HAL_TIM_TriggerCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- }
- /* TIM commutation event */
- if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
- {
- if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
- {
- __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->CommutationCallback(htim);
-#else
- HAL_TIMEx_CommutCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
- }
- }
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
- * @brief TIM Peripheral Control functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral Control functions #####
- ==============================================================================
- [..]
- This section provides functions allowing to:
- (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
- (+) Configure External Clock source.
- (+) Configure Complementary channels, break features and dead time.
- (+) Configure Master and the Slave synchronization.
- (+) Configure the DMA Burst Mode.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Initializes the TIM Output Compare Channels according to the specified
- * parameters in the TIM_OC_InitTypeDef.
- * @param htim TIM Output Compare handle
- * @param sConfig TIM Output Compare configuration structure
- * @param Channel TIM Channels to configure
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
- TIM_OC_InitTypeDef *sConfig,
- uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CHANNELS(Channel));
- assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
- assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- /* Configure the TIM Channel 1 in Output Compare */
- TIM_OC1_SetConfig(htim->Instance, sConfig);
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Configure the TIM Channel 2 in Output Compare */
- TIM_OC2_SetConfig(htim->Instance, sConfig);
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- /* Configure the TIM Channel 3 in Output Compare */
- TIM_OC3_SetConfig(htim->Instance, sConfig);
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- /* Configure the TIM Channel 4 in Output Compare */
- TIM_OC4_SetConfig(htim->Instance, sConfig);
- break;
- }
-
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM Input Capture Channels according to the specified
- * parameters in the TIM_IC_InitTypeDef.
- * @param htim TIM IC handle
- * @param sConfig TIM Input Capture configuration structure
- * @param Channel TIM Channel to configure
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
- assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
- assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
- assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- if (Channel == TIM_CHANNEL_1)
- {
- /* TI1 Configuration */
- TIM_TI1_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC1PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
-
- /* Set the IC1PSC value */
- htim->Instance->CCMR1 |= sConfig->ICPrescaler;
- }
- else if (Channel == TIM_CHANNEL_2)
- {
- /* TI2 Configuration */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_TI2_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC2PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
-
- /* Set the IC2PSC value */
- htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
- }
- else if (Channel == TIM_CHANNEL_3)
- {
- /* TI3 Configuration */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- TIM_TI3_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC3PSC Bits */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
-
- /* Set the IC3PSC value */
- htim->Instance->CCMR2 |= sConfig->ICPrescaler;
- }
- else
- {
- /* TI4 Configuration */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- TIM_TI4_SetConfig(htim->Instance,
- sConfig->ICPolarity,
- sConfig->ICSelection,
- sConfig->ICFilter);
-
- /* Reset the IC4PSC Bits */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
-
- /* Set the IC4PSC value */
- htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM PWM channels according to the specified
- * parameters in the TIM_OC_InitTypeDef.
- * @param htim TIM PWM handle
- * @param sConfig TIM PWM configuration structure
- * @param Channel TIM Channels to be configured
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
- TIM_OC_InitTypeDef *sConfig,
- uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_CHANNELS(Channel));
- assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
- assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
- assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- /* Configure the Channel 1 in PWM mode */
- TIM_OC1_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel1 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
- htim->Instance->CCMR1 |= sConfig->OCFastMode;
- break;
- }
-
- case TIM_CHANNEL_2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Configure the Channel 2 in PWM mode */
- TIM_OC2_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel2 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
- htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- /* Configure the Channel 3 in PWM mode */
- TIM_OC3_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel3 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
- htim->Instance->CCMR2 |= sConfig->OCFastMode;
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- /* Configure the Channel 4 in PWM mode */
- TIM_OC4_SetConfig(htim->Instance, sConfig);
-
- /* Set the Preload enable bit for channel4 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
-
- /* Configure the Output Fast mode */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
- htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
- break;
- }
-
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Initializes the TIM One Pulse Channels according to the specified
- * parameters in the TIM_OnePulse_InitTypeDef.
- * @param htim TIM One Pulse handle
- * @param sConfig TIM One Pulse configuration structure
- * @param OutputChannel TIM output channel to configure
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @param InputChannel TIM input Channel to configure
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @note To output a waveform with a minimum delay user can enable the fast
- * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
- * output is forced in response to the edge detection on TIx input,
- * without taking in account the comparison.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig,
- uint32_t OutputChannel, uint32_t InputChannel)
-{
- TIM_OC_InitTypeDef temp1;
-
- /* Check the parameters */
- assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
- assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
-
- if (OutputChannel != InputChannel)
- {
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Extract the Output compare configuration from sConfig structure */
- temp1.OCMode = sConfig->OCMode;
- temp1.Pulse = sConfig->Pulse;
- temp1.OCPolarity = sConfig->OCPolarity;
- temp1.OCNPolarity = sConfig->OCNPolarity;
- temp1.OCIdleState = sConfig->OCIdleState;
- temp1.OCNIdleState = sConfig->OCNIdleState;
-
- switch (OutputChannel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- TIM_OC1_SetConfig(htim->Instance, &temp1);
- break;
- }
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_OC2_SetConfig(htim->Instance, &temp1);
- break;
- }
- default:
- break;
- }
-
- switch (InputChannel)
- {
- case TIM_CHANNEL_1:
- {
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
- sConfig->ICSelection, sConfig->ICFilter);
-
- /* Reset the IC1PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
-
- /* Select the Trigger source */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= TIM_TS_TI1FP1;
-
- /* Select the Slave Mode */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- break;
- }
- case TIM_CHANNEL_2:
- {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
- sConfig->ICSelection, sConfig->ICFilter);
-
- /* Reset the IC2PSC Bits */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
-
- /* Select the Trigger source */
- htim->Instance->SMCR &= ~TIM_SMCR_TS;
- htim->Instance->SMCR |= TIM_TS_TI2FP2;
-
- /* Select the Slave Mode */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- break;
- }
-
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
-}
-
-/**
- * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
- * @param htim TIM handle
- * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @param BurstRequestSrc TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer The Buffer address.
- * @param BurstLength DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @note This function should be used only when BurstLength is equal to DMA data transfer length.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
- uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
-{
- return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
- ((BurstLength) >> 8U) + 1U);
-}
-
-/**
- * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
- * @param htim TIM handle
- * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @param BurstRequestSrc TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer The Buffer address.
- * @param BurstLength DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @param DataLength Data length. This parameter can be one value
- * between 1 and 0xFFFF.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
- uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
- uint32_t BurstLength, uint32_t DataLength)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
- assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
- assert_param(IS_TIM_DMA_LENGTH(BurstLength));
- assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((BurstBuffer == NULL) && (BurstLength > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
- switch (BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- /* Set the DMA Period elapsed callbacks */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
- htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC1:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC2:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC3:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC4:
- {
- /* Set the DMA compare callbacks */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
- htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_COM:
- {
- /* Set the DMA commutation callbacks */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_TRIGGER:
- {
- /* Set the DMA trigger callbacks */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
- (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- default:
- break;
- }
-
- /* Configure the DMA Burst Mode */
- htim->Instance->DCR = (BurstBaseAddress | BurstLength);
- /* Enable the TIM DMA Request */
- __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
-
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stops the TIM DMA Burst mode
- * @param htim TIM handle
- * @param BurstRequestSrc TIM DMA Request sources to disable
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
-{
- HAL_StatusTypeDef status = HAL_OK;
- /* Check the parameters */
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
-
- /* Abort the DMA transfer (at least disable the DMA channel) */
- switch (BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
- break;
- }
- case TIM_DMA_CC1:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- break;
- }
- case TIM_DMA_CC2:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- break;
- }
- case TIM_DMA_CC3:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
- break;
- }
- case TIM_DMA_CC4:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
- break;
- }
- case TIM_DMA_COM:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- break;
- }
- case TIM_DMA_TRIGGER:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
- break;
- }
- default:
- break;
- }
-
- if (HAL_OK == status)
- {
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
- }
-
- /* Return function status */
- return status;
-}
-
-/**
- * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
- * @param htim TIM handle
- * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @param BurstRequestSrc TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer The Buffer address.
- * @param BurstLength DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @note This function should be used only when BurstLength is equal to DMA data transfer length.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
- uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
-{
- return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
- ((BurstLength) >> 8U) + 1U);
-}
-
-/**
- * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
- * @param htim TIM handle
- * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
- * This parameter can be one of the following values:
- * @arg TIM_DMABASE_CR1
- * @arg TIM_DMABASE_CR2
- * @arg TIM_DMABASE_SMCR
- * @arg TIM_DMABASE_DIER
- * @arg TIM_DMABASE_SR
- * @arg TIM_DMABASE_EGR
- * @arg TIM_DMABASE_CCMR1
- * @arg TIM_DMABASE_CCMR2
- * @arg TIM_DMABASE_CCER
- * @arg TIM_DMABASE_CNT
- * @arg TIM_DMABASE_PSC
- * @arg TIM_DMABASE_ARR
- * @arg TIM_DMABASE_RCR
- * @arg TIM_DMABASE_CCR1
- * @arg TIM_DMABASE_CCR2
- * @arg TIM_DMABASE_CCR3
- * @arg TIM_DMABASE_CCR4
- * @arg TIM_DMABASE_BDTR
- * @param BurstRequestSrc TIM DMA Request sources
- * This parameter can be one of the following values:
- * @arg TIM_DMA_UPDATE: TIM update Interrupt source
- * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
- * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
- * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
- * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
- * @arg TIM_DMA_COM: TIM Commutation DMA source
- * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer The Buffer address.
- * @param BurstLength DMA Burst length. This parameter can be one value
- * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
- * @param DataLength Data length. This parameter can be one value
- * between 1 and 0xFFFF.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
- uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
- uint32_t BurstLength, uint32_t DataLength)
-{
- /* Check the parameters */
- assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
- assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
- assert_param(IS_TIM_DMA_LENGTH(BurstLength));
- assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
-
- if (htim->State == HAL_TIM_STATE_BUSY)
- {
- return HAL_BUSY;
- }
- else if (htim->State == HAL_TIM_STATE_READY)
- {
- if ((BurstBuffer == NULL) && (BurstLength > 0U))
- {
- return HAL_ERROR;
- }
- else
- {
- htim->State = HAL_TIM_STATE_BUSY;
- }
- }
- else
- {
- /* nothing to do */
- }
- switch (BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- /* Set the DMA Period elapsed callbacks */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
- htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC1:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC2:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC3:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_CC4:
- {
- /* Set the DMA capture callbacks */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
- htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_COM:
- {
- /* Set the DMA commutation callbacks */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- case TIM_DMA_TRIGGER:
- {
- /* Set the DMA trigger callbacks */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
-
- /* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
- DataLength) != HAL_OK)
- {
- return HAL_ERROR;
- }
- break;
- }
- default:
- break;
- }
-
- /* Configure the DMA Burst Mode */
- htim->Instance->DCR = (BurstBaseAddress | BurstLength);
-
- /* Enable the TIM DMA Request */
- __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
-
- htim->State = HAL_TIM_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Stop the DMA burst reading
- * @param htim TIM handle
- * @param BurstRequestSrc TIM DMA Request sources to disable.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
-{
- HAL_StatusTypeDef status = HAL_OK;
- /* Check the parameters */
- assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
-
- /* Abort the DMA transfer (at least disable the DMA channel) */
- switch (BurstRequestSrc)
- {
- case TIM_DMA_UPDATE:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
- break;
- }
- case TIM_DMA_CC1:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
- break;
- }
- case TIM_DMA_CC2:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
- break;
- }
- case TIM_DMA_CC3:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
- break;
- }
- case TIM_DMA_CC4:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
- break;
- }
- case TIM_DMA_COM:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- break;
- }
- case TIM_DMA_TRIGGER:
- {
- status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
- break;
- }
- default:
- break;
- }
-
- if (HAL_OK == status)
- {
- /* Disable the TIM Update DMA request */
- __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
- }
-
- /* Return function status */
- return status;
-}
-
-/**
- * @brief Generate a software event
- * @param htim TIM handle
- * @param EventSource specifies the event source.
- * This parameter can be one of the following values:
- * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
- * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
- * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
- * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
- * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
- * @arg TIM_EVENTSOURCE_COM: Timer COM event source
- * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
- * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
- * @note Basic timers can only generate an update event.
- * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
- * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances
- * supporting a break input.
- * @retval HAL status
- */
-
-HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
-{
- /* Check the parameters */
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- assert_param(IS_TIM_EVENT_SOURCE(EventSource));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- /* Change the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Set the event sources */
- htim->Instance->EGR = EventSource;
-
- /* Change the TIM state */
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- /* Return function status */
- return HAL_OK;
-}
-
-/**
- * @brief Configures the OCRef clear feature
- * @param htim TIM handle
- * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
- * contains the OCREF clear feature and parameters for the TIM peripheral.
- * @param Channel specifies the TIM Channel
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1
- * @arg TIM_CHANNEL_2: TIM Channel 2
- * @arg TIM_CHANNEL_3: TIM Channel 3
- * @arg TIM_CHANNEL_4: TIM Channel 4
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
- TIM_ClearInputConfigTypeDef *sClearInputConfig,
- uint32_t Channel)
-{
- /* Check the parameters */
- assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
- assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- switch (sClearInputConfig->ClearInputSource)
- {
- case TIM_CLEARINPUTSOURCE_NONE:
- {
- /* Clear the OCREF clear selection bit and the the ETR Bits */
- CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
- break;
- }
- case TIM_CLEARINPUTSOURCE_OCREFCLR:
- {
- /* Clear the OCREF clear selection bit */
- CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
- }
- break;
-
- case TIM_CLEARINPUTSOURCE_ETR:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
- assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
- assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
-
- /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
- if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
- {
- htim->State = HAL_TIM_STATE_READY;
- __HAL_UNLOCK(htim);
- return HAL_ERROR;
- }
-
- TIM_ETR_SetConfig(htim->Instance,
- sClearInputConfig->ClearInputPrescaler,
- sClearInputConfig->ClearInputPolarity,
- sClearInputConfig->ClearInputFilter);
-
- /* Set the OCREF clear selection bit */
- SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
- break;
- }
-
- default:
- break;
- }
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
- {
- /* Enable the OCREF clear feature for Channel 1 */
- SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
- }
- else
- {
- /* Disable the OCREF clear feature for Channel 1 */
- CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
- }
- break;
- }
- case TIM_CHANNEL_2:
- {
- if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
- {
- /* Enable the OCREF clear feature for Channel 2 */
- SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
- }
- else
- {
- /* Disable the OCREF clear feature for Channel 2 */
- CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
- }
- break;
- }
- case TIM_CHANNEL_3:
- {
- if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
- {
- /* Enable the OCREF clear feature for Channel 3 */
- SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
- }
- else
- {
- /* Disable the OCREF clear feature for Channel 3 */
- CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
- }
- break;
- }
- case TIM_CHANNEL_4:
- {
- if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
- {
- /* Enable the OCREF clear feature for Channel 4 */
- SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
- }
- else
- {
- /* Disable the OCREF clear feature for Channel 4 */
- CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
- }
- break;
- }
- default:
- break;
- }
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the clock source to be used
- * @param htim TIM handle
- * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
- * contains the clock source information for the TIM peripheral.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig)
-{
- uint32_t tmpsmcr;
-
- /* Process Locked */
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Check the parameters */
- assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
-
- /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
- tmpsmcr = htim->Instance->SMCR;
- tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
- htim->Instance->SMCR = tmpsmcr;
-
- switch (sClockSourceConfig->ClockSource)
- {
- case TIM_CLOCKSOURCE_INTERNAL:
- {
- assert_param(IS_TIM_INSTANCE(htim->Instance));
- break;
- }
-
- case TIM_CLOCKSOURCE_ETRMODE1:
- {
- /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
-
- /* Check ETR input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- /* Configure the ETR Clock source */
- TIM_ETR_SetConfig(htim->Instance,
- sClockSourceConfig->ClockPrescaler,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
-
- /* Select the External clock mode1 and the ETRF trigger */
- tmpsmcr = htim->Instance->SMCR;
- tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
- break;
- }
-
- case TIM_CLOCKSOURCE_ETRMODE2:
- {
- /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
-
- /* Check ETR input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- /* Configure the ETR Clock source */
- TIM_ETR_SetConfig(htim->Instance,
- sClockSourceConfig->ClockPrescaler,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- /* Enable the External clock mode2 */
- htim->Instance->SMCR |= TIM_SMCR_ECE;
- break;
- }
-
- case TIM_CLOCKSOURCE_TI1:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI1 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI1_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
- break;
- }
-
- case TIM_CLOCKSOURCE_TI2:
- {
- /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI2 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI2_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
- break;
- }
-
- case TIM_CLOCKSOURCE_TI1ED:
- {
- /* Check whether or not the timer instance supports external clock mode 1 */
- assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
-
- /* Check TI1 input conditioning related parameters */
- assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
-
- TIM_TI1_ConfigInputStage(htim->Instance,
- sClockSourceConfig->ClockPolarity,
- sClockSourceConfig->ClockFilter);
- TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
- break;
- }
-
- case TIM_CLOCKSOURCE_ITR0:
- case TIM_CLOCKSOURCE_ITR1:
- case TIM_CLOCKSOURCE_ITR2:
- case TIM_CLOCKSOURCE_ITR3:
- {
- /* Check whether or not the timer instance supports internal trigger input */
- assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
-
- TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
- break;
- }
-
- default:
- break;
- }
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Selects the signal connected to the TI1 input: direct from CH1_input
- * or a XOR combination between CH1_input, CH2_input & CH3_input
- * @param htim TIM handle.
- * @param TI1_Selection Indicate whether or not channel 1 is connected to the
- * output of a XOR gate.
- * This parameter can be one of the following values:
- * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
- * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
- * pins are connected to the TI1 input (XOR combination)
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
-{
- uint32_t tmpcr2;
-
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
-
- /* Get the TIMx CR2 register value */
- tmpcr2 = htim->Instance->CR2;
-
- /* Reset the TI1 selection */
- tmpcr2 &= ~TIM_CR2_TI1S;
-
- /* Set the TI1 selection */
- tmpcr2 |= TI1_Selection;
-
- /* Write to TIMxCR2 */
- htim->Instance->CR2 = tmpcr2;
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the TIM in Slave mode
- * @param htim TIM handle.
- * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
- * contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the Slave mode
- * (Disable, Reset, Gated, Trigger, External clock mode 1).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig)
-{
- /* Check the parameters */
- assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
- assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
- assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
- {
- htim->State = HAL_TIM_STATE_READY;
- __HAL_UNLOCK(htim);
- return HAL_ERROR;
- }
-
- /* Disable Trigger Interrupt */
- __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
-
- /* Disable Trigger DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Configures the TIM in Slave mode in interrupt mode
- * @param htim TIM handle.
- * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
- * contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the Slave mode
- * (Disable, Reset, Gated, Trigger, External clock mode 1).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef *sSlaveConfig)
-{
- /* Check the parameters */
- assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
- assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
- assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
- {
- htim->State = HAL_TIM_STATE_READY;
- __HAL_UNLOCK(htim);
- return HAL_ERROR;
- }
-
- /* Enable Trigger Interrupt */
- __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
-
- /* Disable Trigger DMA request */
- __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
-
- return HAL_OK;
-}
-
-/**
- * @brief Read the captured value from Capture Compare unit
- * @param htim TIM handle.
- * @param Channel TIM Channels to be enabled
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval Captured value
- */
-uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)
-{
- uint32_t tmpreg = 0U;
-
- switch (Channel)
- {
- case TIM_CHANNEL_1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
-
- /* Return the capture 1 value */
- tmpreg = htim->Instance->CCR1;
-
- break;
- }
- case TIM_CHANNEL_2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
-
- /* Return the capture 2 value */
- tmpreg = htim->Instance->CCR2;
-
- break;
- }
-
- case TIM_CHANNEL_3:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
-
- /* Return the capture 3 value */
- tmpreg = htim->Instance->CCR3;
-
- break;
- }
-
- case TIM_CHANNEL_4:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
-
- /* Return the capture 4 value */
- tmpreg = htim->Instance->CCR4;
-
- break;
- }
-
- default:
- break;
- }
-
- return tmpreg;
-}
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
- * @brief TIM Callbacks functions
- *
-@verbatim
- ==============================================================================
- ##### TIM Callbacks functions #####
- ==============================================================================
- [..]
- This section provides TIM callback functions:
- (+) TIM Period elapsed callback
- (+) TIM Output Compare callback
- (+) TIM Input capture callback
- (+) TIM Trigger callback
- (+) TIM Error callback
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Period elapsed callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Period elapsed half complete callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Output Compare callback in non-blocking mode
- * @param htim TIM OC handle
- * @retval None
- */
-__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Input Capture callback in non-blocking mode
- * @param htim TIM IC handle
- * @retval None
- */
-__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_IC_CaptureCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Input Capture half complete callback in non-blocking mode
- * @param htim TIM IC handle
- * @retval None
- */
-__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief PWM Pulse finished callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief PWM Pulse finished half complete callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Hall Trigger detection callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_TriggerCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Hall Trigger detection half complete callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
- */
-}
-
-/**
- * @brief Timer error callback in non-blocking mode
- * @param htim TIM handle
- * @retval None
- */
-__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(htim);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_TIM_ErrorCallback could be implemented in the user file
- */
-}
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
-/**
- * @brief Register a User TIM callback to be used instead of the weak predefined callback
- * @param htim tim handle
- * @param CallbackID ID of the callback to be registered
- * This parameter can be one of the following values:
- * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
- * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
- * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
- * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
- * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
- * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
- * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
- * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
- * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
- * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
- * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
- * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
- * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
- * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
- * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
- * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
- * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
- * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
- * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
- * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
- * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
- * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
- * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
- * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
- * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
- * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
- * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
- * @param pCallback pointer to the callback function
- * @retval status
- */
-HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
- pTIM_CallbackTypeDef pCallback)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- if (pCallback == NULL)
- {
- return HAL_ERROR;
- }
- /* Process locked */
- __HAL_LOCK(htim);
-
- if (htim->State == HAL_TIM_STATE_READY)
- {
- switch (CallbackID)
- {
- case HAL_TIM_BASE_MSPINIT_CB_ID :
- htim->Base_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_BASE_MSPDEINIT_CB_ID :
- htim->Base_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_IC_MSPINIT_CB_ID :
- htim->IC_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_IC_MSPDEINIT_CB_ID :
- htim->IC_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_OC_MSPINIT_CB_ID :
- htim->OC_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_OC_MSPDEINIT_CB_ID :
- htim->OC_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_MSPINIT_CB_ID :
- htim->PWM_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_MSPDEINIT_CB_ID :
- htim->PWM_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
- htim->OnePulse_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
- htim->OnePulse_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_ENCODER_MSPINIT_CB_ID :
- htim->Encoder_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
- htim->Encoder_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
- htim->HallSensor_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
- htim->HallSensor_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_PERIOD_ELAPSED_CB_ID :
- htim->PeriodElapsedCallback = pCallback;
- break;
-
- case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
- htim->PeriodElapsedHalfCpltCallback = pCallback;
- break;
-
- case HAL_TIM_TRIGGER_CB_ID :
- htim->TriggerCallback = pCallback;
- break;
-
- case HAL_TIM_TRIGGER_HALF_CB_ID :
- htim->TriggerHalfCpltCallback = pCallback;
- break;
-
- case HAL_TIM_IC_CAPTURE_CB_ID :
- htim->IC_CaptureCallback = pCallback;
- break;
-
- case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
- htim->IC_CaptureHalfCpltCallback = pCallback;
- break;
-
- case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
- htim->OC_DelayElapsedCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
- htim->PWM_PulseFinishedCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
- htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
- break;
-
- case HAL_TIM_ERROR_CB_ID :
- htim->ErrorCallback = pCallback;
- break;
-
- case HAL_TIM_COMMUTATION_CB_ID :
- htim->CommutationCallback = pCallback;
- break;
-
- case HAL_TIM_COMMUTATION_HALF_CB_ID :
- htim->CommutationHalfCpltCallback = pCallback;
- break;
-
- case HAL_TIM_BREAK_CB_ID :
- htim->BreakCallback = pCallback;
- break;
-
- default :
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else if (htim->State == HAL_TIM_STATE_RESET)
- {
- switch (CallbackID)
- {
- case HAL_TIM_BASE_MSPINIT_CB_ID :
- htim->Base_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_BASE_MSPDEINIT_CB_ID :
- htim->Base_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_IC_MSPINIT_CB_ID :
- htim->IC_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_IC_MSPDEINIT_CB_ID :
- htim->IC_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_OC_MSPINIT_CB_ID :
- htim->OC_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_OC_MSPDEINIT_CB_ID :
- htim->OC_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_MSPINIT_CB_ID :
- htim->PWM_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_PWM_MSPDEINIT_CB_ID :
- htim->PWM_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
- htim->OnePulse_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
- htim->OnePulse_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_ENCODER_MSPINIT_CB_ID :
- htim->Encoder_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
- htim->Encoder_MspDeInitCallback = pCallback;
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
- htim->HallSensor_MspInitCallback = pCallback;
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
- htim->HallSensor_MspDeInitCallback = pCallback;
- break;
-
- default :
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Return error status */
- status = HAL_ERROR;
- }
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return status;
-}
-
-/**
- * @brief Unregister a TIM callback
- * TIM callback is redirected to the weak predefined callback
- * @param htim tim handle
- * @param CallbackID ID of the callback to be unregistered
- * This parameter can be one of the following values:
- * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
- * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
- * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
- * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
- * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
- * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
- * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
- * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
- * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
- * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
- * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
- * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
- * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
- * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
- * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
- * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
- * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
- * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
- * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
- * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
- * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
- * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
- * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
- * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
- * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
- * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
- * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
- * @retval status
- */
-HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Process locked */
- __HAL_LOCK(htim);
-
- if (htim->State == HAL_TIM_STATE_READY)
- {
- switch (CallbackID)
- {
- case HAL_TIM_BASE_MSPINIT_CB_ID :
- htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
- break;
-
- case HAL_TIM_BASE_MSPDEINIT_CB_ID :
- htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
- break;
-
- case HAL_TIM_IC_MSPINIT_CB_ID :
- htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
- break;
-
- case HAL_TIM_IC_MSPDEINIT_CB_ID :
- htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
- break;
-
- case HAL_TIM_OC_MSPINIT_CB_ID :
- htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
- break;
-
- case HAL_TIM_OC_MSPDEINIT_CB_ID :
- htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
- break;
-
- case HAL_TIM_PWM_MSPINIT_CB_ID :
- htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
- break;
-
- case HAL_TIM_PWM_MSPDEINIT_CB_ID :
- htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
- break;
-
- case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
- htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
- break;
-
- case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
- htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
- break;
-
- case HAL_TIM_ENCODER_MSPINIT_CB_ID :
- htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
- break;
-
- case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
- htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
- htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
- htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
- break;
-
- case HAL_TIM_PERIOD_ELAPSED_CB_ID :
- htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */
- break;
-
- case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
- htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */
- break;
-
- case HAL_TIM_TRIGGER_CB_ID :
- htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */
- break;
-
- case HAL_TIM_TRIGGER_HALF_CB_ID :
- htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */
- break;
-
- case HAL_TIM_IC_CAPTURE_CB_ID :
- htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */
- break;
-
- case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
- htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */
- break;
-
- case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
- htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */
- break;
-
- case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
- htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */
- break;
-
- case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
- htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */
- break;
-
- case HAL_TIM_ERROR_CB_ID :
- htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */
- break;
-
- case HAL_TIM_COMMUTATION_CB_ID :
- htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */
- break;
-
- case HAL_TIM_COMMUTATION_HALF_CB_ID :
- htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */
- break;
-
- case HAL_TIM_BREAK_CB_ID :
- htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */
- break;
-
- default :
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else if (htim->State == HAL_TIM_STATE_RESET)
- {
- switch (CallbackID)
- {
- case HAL_TIM_BASE_MSPINIT_CB_ID :
- htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
- break;
-
- case HAL_TIM_BASE_MSPDEINIT_CB_ID :
- htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
- break;
-
- case HAL_TIM_IC_MSPINIT_CB_ID :
- htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
- break;
-
- case HAL_TIM_IC_MSPDEINIT_CB_ID :
- htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
- break;
-
- case HAL_TIM_OC_MSPINIT_CB_ID :
- htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
- break;
-
- case HAL_TIM_OC_MSPDEINIT_CB_ID :
- htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
- break;
-
- case HAL_TIM_PWM_MSPINIT_CB_ID :
- htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
- break;
-
- case HAL_TIM_PWM_MSPDEINIT_CB_ID :
- htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
- break;
-
- case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
- htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
- break;
-
- case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
- htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
- break;
-
- case HAL_TIM_ENCODER_MSPINIT_CB_ID :
- htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
- break;
-
- case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
- htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
- htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
- break;
-
- case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
- htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
- break;
-
- default :
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Return error status */
- status = HAL_ERROR;
- }
-
- /* Release Lock */
- __HAL_UNLOCK(htim);
-
- return status;
-}
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
- * @brief TIM Peripheral State functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral State functions #####
- ==============================================================================
- [..]
- This subsection permits to get in run-time the status of the peripheral
- and the data flow.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Return the TIM Base handle state.
- * @param htim TIM Base handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM OC handle state.
- * @param htim TIM Output Compare handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM PWM handle state.
- * @param htim TIM handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM Input Capture handle state.
- * @param htim TIM IC handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM One Pulse Mode handle state.
- * @param htim TIM OPM handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @brief Return the TIM Encoder Mode handle state.
- * @param htim TIM Encoder Interface handle
- * @retval HAL state
- */
-HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim)
-{
- return htim->State;
-}
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @defgroup TIM_Private_Functions TIM Private Functions
- * @{
- */
-
-/**
- * @brief TIM DMA error callback
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-void TIM_DMAError(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->ErrorCallback(htim);
-#else
- HAL_TIM_ErrorCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief TIM DMA Delay Pulse complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
- else
- {
- /* nothing to do */
- }
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->PWM_PulseFinishedCallback(htim);
-#else
- HAL_TIM_PWM_PulseFinishedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-
-/**
- * @brief TIM DMA Delay Pulse half complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
- else
- {
- /* nothing to do */
- }
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->PWM_PulseFinishedHalfCpltCallback(htim);
-#else
- HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-
-/**
- * @brief TIM DMA Capture complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
- else
- {
- /* nothing to do */
- }
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureCallback(htim);
-#else
- HAL_TIM_IC_CaptureCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-
-/**
- * @brief TIM DMA Capture half complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
- if (hdma == htim->hdma[TIM_DMA_ID_CC1])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
- }
- else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
- {
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
- }
- else
- {
- /* nothing to do */
- }
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->IC_CaptureHalfCpltCallback(htim);
-#else
- HAL_TIM_IC_CaptureHalfCpltCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
- htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
-}
-
-/**
- * @brief TIM DMA Period Elapse complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->PeriodElapsedCallback(htim);
-#else
- HAL_TIM_PeriodElapsedCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief TIM DMA Period Elapse half complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->PeriodElapsedHalfCpltCallback(htim);
-#else
- HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief TIM DMA Trigger callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->TriggerCallback(htim);
-#else
- HAL_TIM_TriggerCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief TIM DMA Trigger half complete callback.
- * @param hdma pointer to DMA handle.
- * @retval None
- */
-static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
-{
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
- htim->TriggerHalfCpltCallback(htim);
-#else
- HAL_TIM_TriggerHalfCpltCallback(htim);
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief Time Base configuration
- * @param TIMx TIM peripheral
- * @param Structure TIM Base configuration structure
- * @retval None
- */
-void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure)
-{
- uint32_t tmpcr1;
- tmpcr1 = TIMx->CR1;
-
- /* Set TIM Time Base Unit parameters ---------------------------------------*/
- if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
- {
- /* Select the Counter Mode */
- tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
- tmpcr1 |= Structure->CounterMode;
- }
-
- if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
- {
- /* Set the clock division */
- tmpcr1 &= ~TIM_CR1_CKD;
- tmpcr1 |= (uint32_t)Structure->ClockDivision;
- }
-
- /* Set the auto-reload preload */
- MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
-
- TIMx->CR1 = tmpcr1;
-
- /* Set the Autoreload value */
- TIMx->ARR = (uint32_t)Structure->Period ;
-
- /* Set the Prescaler value */
- TIMx->PSC = Structure->Prescaler;
-
- if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
- {
- /* Set the Repetition Counter value */
- TIMx->RCR = Structure->RepetitionCounter;
- }
-
- /* Generate an update event to reload the Prescaler
- and the repetition counter (only for advanced timer) value immediately */
- TIMx->EGR = TIM_EGR_UG;
-}
-
-/**
- * @brief Timer Output Compare 1 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config The ouput configuration structure
- * @retval None
- */
-static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx;
- uint32_t tmpccer;
- uint32_t tmpcr2;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- TIMx->CCER &= ~TIM_CCER_CC1E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmrx = TIMx->CCMR1;
-
- /* Reset the Output Compare Mode Bits */
- tmpccmrx &= ~TIM_CCMR1_OC1M;
- tmpccmrx &= ~TIM_CCMR1_CC1S;
- /* Select the Output Compare Mode */
- tmpccmrx |= OC_Config->OCMode;
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC1P;
- /* Set the Output Compare Polarity */
- tmpccer |= OC_Config->OCPolarity;
-
- if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC1NP;
- /* Set the Output N Polarity */
- tmpccer |= OC_Config->OCNPolarity;
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC1NE;
- }
-
- if (IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS1;
- tmpcr2 &= ~TIM_CR2_OIS1N;
- /* Set the Output Idle state */
- tmpcr2 |= OC_Config->OCIdleState;
- /* Set the Output N Idle state */
- tmpcr2 |= OC_Config->OCNIdleState;
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR1 */
- TIMx->CCMR1 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR1 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Timer Output Compare 2 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config The ouput configuration structure
- * @retval None
- */
-void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx;
- uint32_t tmpccer;
- uint32_t tmpcr2;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR1 register value */
- tmpccmrx = TIMx->CCMR1;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR1_OC2M;
- tmpccmrx &= ~TIM_CCMR1_CC2S;
-
- /* Select the Output Compare Mode */
- tmpccmrx |= (OC_Config->OCMode << 8U);
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC2P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 4U);
-
- if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
- {
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC2NP;
- /* Set the Output N Polarity */
- tmpccer |= (OC_Config->OCNPolarity << 4U);
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC2NE;
-
- }
-
- if (IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS2;
- tmpcr2 &= ~TIM_CR2_OIS2N;
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 2U);
- /* Set the Output N Idle state */
- tmpcr2 |= (OC_Config->OCNIdleState << 2U);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR1 */
- TIMx->CCMR1 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR2 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Timer Output Compare 3 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config The ouput configuration structure
- * @retval None
- */
-static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx;
- uint32_t tmpccer;
- uint32_t tmpcr2;
-
- /* Disable the Channel 3: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC3E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR2 register value */
- tmpccmrx = TIMx->CCMR2;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR2_OC3M;
- tmpccmrx &= ~TIM_CCMR2_CC3S;
- /* Select the Output Compare Mode */
- tmpccmrx |= OC_Config->OCMode;
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC3P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 8U);
-
- if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
- {
- assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
-
- /* Reset the Output N Polarity level */
- tmpccer &= ~TIM_CCER_CC3NP;
- /* Set the Output N Polarity */
- tmpccer |= (OC_Config->OCNPolarity << 8U);
- /* Reset the Output N State */
- tmpccer &= ~TIM_CCER_CC3NE;
- }
-
- if (IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare and Output Compare N IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS3;
- tmpcr2 &= ~TIM_CR2_OIS3N;
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 4U);
- /* Set the Output N Idle state */
- tmpcr2 |= (OC_Config->OCNIdleState << 4U);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR2 */
- TIMx->CCMR2 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR3 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Timer Output Compare 4 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config The ouput configuration structure
- * @retval None
- */
-static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
-{
- uint32_t tmpccmrx;
- uint32_t tmpccer;
- uint32_t tmpcr2;
-
- /* Disable the Channel 4: Reset the CC4E Bit */
- TIMx->CCER &= ~TIM_CCER_CC4E;
-
- /* Get the TIMx CCER register value */
- tmpccer = TIMx->CCER;
- /* Get the TIMx CR2 register value */
- tmpcr2 = TIMx->CR2;
-
- /* Get the TIMx CCMR2 register value */
- tmpccmrx = TIMx->CCMR2;
-
- /* Reset the Output Compare mode and Capture/Compare selection Bits */
- tmpccmrx &= ~TIM_CCMR2_OC4M;
- tmpccmrx &= ~TIM_CCMR2_CC4S;
-
- /* Select the Output Compare Mode */
- tmpccmrx |= (OC_Config->OCMode << 8U);
-
- /* Reset the Output Polarity level */
- tmpccer &= ~TIM_CCER_CC4P;
- /* Set the Output Compare Polarity */
- tmpccer |= (OC_Config->OCPolarity << 12U);
-
- if (IS_TIM_BREAK_INSTANCE(TIMx))
- {
- /* Check parameters */
- assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
-
- /* Reset the Output Compare IDLE State */
- tmpcr2 &= ~TIM_CR2_OIS4;
-
- /* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 6U);
- }
-
- /* Write to TIMx CR2 */
- TIMx->CR2 = tmpcr2;
-
- /* Write to TIMx CCMR2 */
- TIMx->CCMR2 = tmpccmrx;
-
- /* Set the Capture Compare Register value */
- TIMx->CCR4 = OC_Config->Pulse;
-
- /* Write to TIMx CCER */
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Slave Timer configuration function
- * @param htim TIM handle
- * @param sSlaveConfig Slave timer configuration
- * @retval None
- */
-static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
- TIM_SlaveConfigTypeDef *sSlaveConfig)
-{
- uint32_t tmpsmcr;
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = htim->Instance->SMCR;
-
- /* Reset the Trigger Selection Bits */
- tmpsmcr &= ~TIM_SMCR_TS;
- /* Set the Input Trigger source */
- tmpsmcr |= sSlaveConfig->InputTrigger;
-
- /* Reset the slave mode Bits */
- tmpsmcr &= ~TIM_SMCR_SMS;
- /* Set the slave mode */
- tmpsmcr |= sSlaveConfig->SlaveMode;
-
- /* Write to TIMx SMCR */
- htim->Instance->SMCR = tmpsmcr;
-
- /* Configure the trigger prescaler, filter, and polarity */
- switch (sSlaveConfig->InputTrigger)
- {
- case TIM_TS_ETRF:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
- /* Configure the ETR Trigger source */
- TIM_ETR_SetConfig(htim->Instance,
- sSlaveConfig->TriggerPrescaler,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- break;
- }
-
- case TIM_TS_TI1F_ED:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- if(sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
- {
- return HAL_ERROR;
- }
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- tmpccer = htim->Instance->CCER;
- htim->Instance->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = htim->Instance->CCMR1;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
-
- /* Write to TIMx CCMR1 and CCER registers */
- htim->Instance->CCMR1 = tmpccmr1;
- htim->Instance->CCER = tmpccer;
- break;
- }
-
- case TIM_TS_TI1FP1:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- /* Configure TI1 Filter and Polarity */
- TIM_TI1_ConfigInputStage(htim->Instance,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- break;
- }
-
- case TIM_TS_TI2FP2:
- {
- /* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
- assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
-
- /* Configure TI2 Filter and Polarity */
- TIM_TI2_ConfigInputStage(htim->Instance,
- sSlaveConfig->TriggerPolarity,
- sSlaveConfig->TriggerFilter);
- break;
- }
-
- case TIM_TS_ITR0:
- case TIM_TS_ITR1:
- case TIM_TS_ITR2:
- case TIM_TS_ITR3:
- {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- break;
- }
-
- default:
- break;
- }
- return HAL_OK;
-}
-
-/**
- * @brief Configure the TI1 as Input.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
- * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
- * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
- * protected against un-initialized filter and polarity values.
- */
-void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- TIMx->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
- {
- tmpccmr1 &= ~TIM_CCMR1_CC1S;
- tmpccmr1 |= TIM_ICSelection;
- }
- else
- {
- tmpccmr1 |= TIM_CCMR1_CC1S_0;
- }
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
-
- /* Select the Polarity and set the CC1E Bit */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
- tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the Polarity and Filter for TI1.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- */
-static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Disable the Channel 1: Reset the CC1E Bit */
- tmpccer = TIMx->CCER;
- TIMx->CCER &= ~TIM_CCER_CC1E;
- tmpccmr1 = TIMx->CCMR1;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC1F;
- tmpccmr1 |= (TIM_ICFilter << 4U);
-
- /* Select the Polarity and set the CC1E Bit */
- tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
- tmpccer |= TIM_ICPolarity;
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI2 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
- * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
- * protected against un-initialized filter and polarity values.
- */
-static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr1 &= ~TIM_CCMR1_CC2S;
- tmpccmr1 |= (TIM_ICSelection << 8U);
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC2F;
- tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
-
- /* Select the Polarity and set the CC2E Bit */
- tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
- tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1 ;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the Polarity and Filter for TI2.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- */
-static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr1;
- uint32_t tmpccer;
-
- /* Disable the Channel 2: Reset the CC2E Bit */
- TIMx->CCER &= ~TIM_CCER_CC2E;
- tmpccmr1 = TIMx->CCMR1;
- tmpccer = TIMx->CCER;
-
- /* Set the filter */
- tmpccmr1 &= ~TIM_CCMR1_IC2F;
- tmpccmr1 |= (TIM_ICFilter << 12U);
-
- /* Select the Polarity and set the CC2E Bit */
- tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
- tmpccer |= (TIM_ICPolarity << 4U);
-
- /* Write to TIMx CCMR1 and CCER registers */
- TIMx->CCMR1 = tmpccmr1 ;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI3 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
- * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @retval None
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
- * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
- * protected against un-initialized filter and polarity values.
- */
-static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr2;
- uint32_t tmpccer;
-
- /* Disable the Channel 3: Reset the CC3E Bit */
- TIMx->CCER &= ~TIM_CCER_CC3E;
- tmpccmr2 = TIMx->CCMR2;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr2 &= ~TIM_CCMR2_CC3S;
- tmpccmr2 |= TIM_ICSelection;
-
- /* Set the filter */
- tmpccmr2 &= ~TIM_CCMR2_IC3F;
- tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
-
- /* Select the Polarity and set the CC3E Bit */
- tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
- tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
-
- /* Write to TIMx CCMR2 and CCER registers */
- TIMx->CCMR2 = tmpccmr2;
- TIMx->CCER = tmpccer;
-}
-
-/**
- * @brief Configure the TI4 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity The Input Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ICPOLARITY_RISING
- * @arg TIM_ICPOLARITY_FALLING
- * @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection specifies the input to be used.
- * This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
- * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
- * @param TIM_ICFilter Specifies the Input Capture Filter.
- * This parameter must be a value between 0x00 and 0x0F.
- * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
- * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
- * protected against un-initialized filter and polarity values.
- * @retval None
- */
-static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
- uint32_t TIM_ICFilter)
-{
- uint32_t tmpccmr2;
- uint32_t tmpccer;
-
- /* Disable the Channel 4: Reset the CC4E Bit */
- TIMx->CCER &= ~TIM_CCER_CC4E;
- tmpccmr2 = TIMx->CCMR2;
- tmpccer = TIMx->CCER;
-
- /* Select the Input */
- tmpccmr2 &= ~TIM_CCMR2_CC4S;
- tmpccmr2 |= (TIM_ICSelection << 8U);
-
- /* Set the filter */
- tmpccmr2 &= ~TIM_CCMR2_IC4F;
- tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
-
- /* Select the Polarity and set the CC4E Bit */
- tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
- tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
-
- /* Write to TIMx CCMR2 and CCER registers */
- TIMx->CCMR2 = tmpccmr2;
- TIMx->CCER = tmpccer ;
-}
-
-/**
- * @brief Selects the Input Trigger source
- * @param TIMx to select the TIM peripheral
- * @param InputTriggerSource The Input Trigger source.
- * This parameter can be one of the following values:
- * @arg TIM_TS_ITR0: Internal Trigger 0
- * @arg TIM_TS_ITR1: Internal Trigger 1
- * @arg TIM_TS_ITR2: Internal Trigger 2
- * @arg TIM_TS_ITR3: Internal Trigger 3
- * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
- * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
- * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
- * @arg TIM_TS_ETRF: External Trigger input
- * @retval None
- */
-static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
-{
- uint32_t tmpsmcr;
-
- /* Get the TIMx SMCR register value */
- tmpsmcr = TIMx->SMCR;
- /* Reset the TS Bits */
- tmpsmcr &= ~TIM_SMCR_TS;
- /* Set the Input Trigger source and the slave mode*/
- tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
- /* Write to TIMx SMCR */
- TIMx->SMCR = tmpsmcr;
-}
-/**
- * @brief Configures the TIMx External Trigger (ETR).
- * @param TIMx to select the TIM peripheral
- * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
- * This parameter can be one of the following values:
- * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
- * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
- * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
- * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
- * @param TIM_ExtTRGPolarity The external Trigger Polarity.
- * This parameter can be one of the following values:
- * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
- * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
- * @param ExtTRGFilter External Trigger Filter.
- * This parameter must be a value between 0x00 and 0x0F
- * @retval None
- */
-void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
- uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
-{
- uint32_t tmpsmcr;
-
- tmpsmcr = TIMx->SMCR;
-
- /* Reset the ETR Bits */
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
-
- /* Set the Prescaler, the Filter value and the Polarity */
- tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
-
- /* Write to TIMx SMCR */
- TIMx->SMCR = tmpsmcr;
-}
-
-/**
- * @brief Enables or disables the TIM Capture Compare Channel x.
- * @param TIMx to select the TIM peripheral
- * @param Channel specifies the TIM Channel
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1
- * @arg TIM_CHANNEL_2: TIM Channel 2
- * @arg TIM_CHANNEL_3: TIM Channel 3
- * @arg TIM_CHANNEL_4: TIM Channel 4
- * @param ChannelState specifies the TIM Channel CCxE bit new state.
- * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
- * @retval None
- */
-void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
-{
- uint32_t tmp;
-
- /* Check the parameters */
- assert_param(IS_TIM_CC1_INSTANCE(TIMx));
- assert_param(IS_TIM_CHANNELS(Channel));
-
- tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
-
- /* Reset the CCxE Bit */
- TIMx->CCER &= ~tmp;
-
- /* Set or reset the CCxE Bit */
- TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
-}
-
-#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
-/**
- * @brief Reset interrupt callbacks to the legacy weak callbacks.
- * @param htim pointer to a TIM_HandleTypeDef structure that contains
- * the configuration information for TIM module.
- * @retval None
- */
-void TIM_ResetCallback(TIM_HandleTypeDef *htim)
-{
- /* Reset the TIM callback to the legacy weak callbacks */
- htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */
- htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */
- htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */
- htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */
- htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */
- htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */
- htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */
- htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */
- htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */
- htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */
- htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */
- htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */
- htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */
-}
-#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
-
-/**
- * @}
- */
-
-#endif /* HAL_TIM_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|