summaryrefslogtreecommitdiff
path: root/hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c')
-rw-r--r--hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c129
1 files changed, 0 insertions, 129 deletions
diff --git a/hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c b/hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c
deleted file mode 100644
index 498face..0000000
--- a/hid-dials/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_power_q31.c
+++ /dev/null
@@ -1,129 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_power_q31.c
- * Description: Sum of the squares of the elements of a Q31 vector
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupStats
- */
-
-/**
- * @addtogroup power
- * @{
- */
-
-/**
- * @brief Sum of the squares of the elements of a Q31 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult sum of the squares value returned here
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * The input is represented in 1.31 format.
- * Intermediate multiplication yields a 2.62 format, and this
- * result is truncated to 2.48 format by discarding the lower 14 bits.
- * The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
- * With 15 guard bits in the accumulator, there is no risk of overflow, and the
- * full precision of the intermediate multiplication is preserved.
- * Finally, the return result is in 16.48 format.
- *
- */
-
-void arm_power_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult)
-{
- q63_t sum = 0; /* Temporary result storage */
- q31_t in;
- uint32_t blkCnt; /* loop counter */
-
-
-#if defined (ARM_MATH_DSP)
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- /*loop Unrolling */
- blkCnt = blockSize >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U)
- {
- /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
- /* Compute Power then shift intermediate results by 14 bits to maintain 16.48 format and then store the result in a temporary variable sum, providing 15 guard bits. */
- in = *pSrc++;
- sum += ((q63_t) in * in) >> 14U;
-
- in = *pSrc++;
- sum += ((q63_t) in * in) >> 14U;
-
- in = *pSrc++;
- sum += ((q63_t) in * in) >> 14U;
-
- in = *pSrc++;
- sum += ((q63_t) in * in) >> 14U;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x4U;
-
-#else
- /* Run the below code for Cortex-M0 */
-
- /* Loop over blockSize number of values */
- blkCnt = blockSize;
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- while (blkCnt > 0U)
- {
- /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
- /* Compute Power and then store the result in a temporary variable, sum. */
- in = *pSrc++;
- sum += ((q63_t) in * in) >> 14U;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Store the results in 16.48 format */
- *pResult = sum;
-}
-
-/**
- * @} end of power group
- */