summaryrefslogtreecommitdiff
path: root/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c')
-rw-r--r--fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c384
1 files changed, 384 insertions, 0 deletions
diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
new file mode 100644
index 0000000..bff3177
--- /dev/null
+++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
@@ -0,0 +1,384 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_fast_q31.c
+ * Description: Q31 matrix multiplication (fast variant)
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+/**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The difference between the function arm_mat_mult_q31() and this fast variant is that
+ * the fast variant use a 32-bit rather than a 64-bit accumulator.
+ * The result of each 1.31 x 1.31 multiplication is truncated to
+ * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
+ * format. Finally, the accumulator is saturated and converted to a 1.31 result.
+ *
+ * \par
+ * The fast version has the same overflow behavior as the standard version but provides
+ * less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signals must be scaled down.
+ * Scale down one of the input matrices by log2(numColsA) bits to
+ * avoid overflows, as a total of numColsA additions are computed internally for each
+ * output element.
+ *
+ * \par
+ * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
+ * which uses 64-bit accumulation to provide higher precision.
+ */
+
+arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *px; /* Temporary output data matrix pointer */
+ q31_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+ q31_t inA1, inB1;
+
+#if defined (ARM_MATH_DSP)
+
+ q31_t sum2, sum3, sum4;
+ q31_t inA2, inB2;
+ q31_t *pInA2;
+ q31_t *px2;
+
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ px = pDst->pData;
+
+#if defined (ARM_MATH_DSP)
+ row = row >> 1;
+ px2 = px + numColsB;
+#endif
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ while (row > 0U)
+ {
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pInB = pSrcB->pData;
+
+ j = 0U;
+
+#if defined (ARM_MATH_DSP)
+ col = col >> 1;
+#endif
+
+ /* column loop */
+ while (col > 0U)
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate data pointers */
+ pInA = pSrcA->pData + i;
+ pInB = pSrcB->pData + j;
+
+#if defined (ARM_MATH_DSP)
+ sum2 = 0;
+ sum3 = 0;
+ sum4 = 0;
+ pInA2 = pInA + numColsA;
+ colCnt = numColsA;
+#else
+ colCnt = numColsA >> 2;
+#endif
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+
+#if defined (ARM_MATH_DSP)
+ inA1 = *pInA++;
+ inB1 = pInB[0];
+ inA2 = *pInA2++;
+ inB2 = pInB[1];
+ pInB += numColsB;
+
+ sum = __SMMLA(inA1, inB1, sum);
+ sum2 = __SMMLA(inA1, inB2, sum2);
+ sum3 = __SMMLA(inA2, inB1, sum3);
+ sum4 = __SMMLA(inA2, inB2, sum4);
+#else
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+ /* Perform the multiply-accumulates */
+ inB1 = *pInB;
+ pInB += numColsB;
+ inA1 = pInA[0];
+ sum = __SMMLA(inA1, inB1, sum);
+
+ inB1 = *pInB;
+ pInB += numColsB;
+ inA1 = pInA[1];
+ sum = __SMMLA(inA1, inB1, sum);
+
+ inB1 = *pInB;
+ pInB += numColsB;
+ inA1 = pInA[2];
+ sum = __SMMLA(inA1, inB1, sum);
+
+ inB1 = *pInB;
+ pInB += numColsB;
+ inA1 = pInA[3];
+ sum = __SMMLA(inA1, inB1, sum);
+
+ pInA += 4U;
+#endif
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+#ifdef ARM_MATH_CM0_FAMILY
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */
+ colCnt = numColsA % 0x4U;
+ while (colCnt > 0U)
+ {
+ sum = __SMMLA(*pInA++, *pInB, sum);
+ pInB += numColsB;
+ colCnt--;
+ }
+ j++;
+#endif
+
+ /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+ *px++ = sum << 1;
+
+#if defined (ARM_MATH_DSP)
+ *px++ = sum2 << 1;
+ *px2++ = sum3 << 1;
+ *px2++ = sum4 << 1;
+ j += 2;
+#endif
+
+ /* Decrement the column loop counter */
+ col--;
+
+ }
+
+ i = i + numColsA;
+
+#if defined (ARM_MATH_DSP)
+ i = i + numColsA;
+ px = px2 + (numColsB & 1U);
+ px2 = px + numColsB;
+#endif
+
+ /* Decrement the row loop counter */
+ row--;
+
+ }
+
+ /* Compute any remaining odd row/column below */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Compute remaining output column */
+ if (numColsB & 1U) {
+
+ /* Avoid redundant computation of last element */
+ row = numRowsA & (~0x1);
+
+ /* Point to remaining unfilled column in output matrix */
+ px = pDst->pData+numColsB-1;
+ pInA = pSrcA->pData;
+
+ /* row loop */
+ while (row > 0)
+ {
+
+ /* point to last column in matrix B */
+ pInB = pSrcB->pData + numColsB-1;
+
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Compute 4 columns at once */
+ colCnt = numColsA >> 2;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+ sum = __SMMLA(inA1, inB1, sum);
+ sum = __SMMLA(inA2, inB2, sum);
+
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+ sum = __SMMLA(inA1, inB1, sum);
+ sum = __SMMLA(inA2, inB2, sum);
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ colCnt = numColsA & 3U;
+ while (colCnt > 0U) {
+ sum = __SMMLA(*pInA++, *pInB, sum);
+ pInB += numColsB;
+ colCnt--;
+ }
+
+ /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+ *px = sum << 1;
+ px += numColsB;
+
+ /* Decrement the row loop counter */
+ row--;
+ }
+ }
+
+ /* Compute remaining output row */
+ if (numRowsA & 1U) {
+
+ /* point to last row in output matrix */
+ px = pDst->pData+(numColsB)*(numRowsA-1);
+
+ col = numColsB;
+ i = 0U;
+
+ /* col loop */
+ while (col > 0)
+ {
+
+ /* point to last row in matrix A */
+ pInA = pSrcA->pData + (numRowsA-1)*numColsA;
+ pInB = pSrcB->pData + i;
+
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Compute 4 columns at once */
+ colCnt = numColsA >> 2;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+ sum = __SMMLA(inA1, inB1, sum);
+ sum = __SMMLA(inA2, inB2, sum);
+
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+ sum = __SMMLA(inA1, inB1, sum);
+ sum = __SMMLA(inA2, inB2, sum);
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ colCnt = numColsA & 3U;
+ while (colCnt > 0U) {
+ sum = __SMMLA(*pInA++, *pInB, sum);
+ pInB += numColsB;
+ colCnt--;
+ }
+
+ /* Saturate and store the result in the destination buffer */
+ *px++ = sum << 1;
+ i++;
+
+ /* Decrement the col loop counter */
+ col--;
+ }
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */