summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c525
1 files changed, 0 insertions, 525 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
deleted file mode 100644
index 796df88..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
+++ /dev/null
@@ -1,525 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_fast_q15.c
- * Description: Q15 matrix multiplication (fast variant)
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupMatrix
- */
-
-/**
- * @addtogroup MatrixMult
- * @{
- */
-
-
-/**
- * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @param[in] *pState points to the array for storing intermediate results
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The difference between the function arm_mat_mult_q15() and this fast variant is that
- * the fast variant use a 32-bit rather than a 64-bit accumulator.
- * The result of each 1.15 x 1.15 multiplication is truncated to
- * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
- * format. Finally, the accumulator is saturated and converted to a 1.15 result.
- *
- * \par
- * The fast version has the same overflow behavior as the standard version but provides
- * less precision since it discards the low 16 bits of each multiplication result.
- * In order to avoid overflows completely the input signals must be scaled down.
- * Scale down one of the input matrices by log2(numColsA) bits to
- * avoid overflows, as a total of numColsA additions are computed internally for each
- * output element.
- *
- * \par
- * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
- * which uses 64-bit accumulation to provide higher precision.
- */
-
-arm_status arm_mat_mult_fast_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState)
-{
- q31_t sum; /* accumulator */
- q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- uint32_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- q31_t in; /* Temporary variable to hold the input value */
- q31_t inA1, inA2, inB1, inB2;
- q31_t sum2, sum3, sum4;
- q15_t *pInA2, *pInB2, *px2;
- uint32_t j = 0;
-
-#else
-
- q15_t in; /* Temporary variable to hold the input value */
- q15_t inA1, inA2, inB1, inB2;
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif
- {
- /* Matrix transpose */
- do
- {
- /* Apply loop unrolling and exchange the columns with row elements */
- col = numColsB >> 2;
-
- /* The pointer px is set to starting address of the column being processed */
- px = pSrcBT + i;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (col > 0U)
- {
-#ifndef UNALIGNED_SUPPORT_DISABLE
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
-
- /* Unpack and store one element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *px = (q15_t) in;
-
-#else
-
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Unpack and store the second element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#else
-
- *px = (q15_t) in;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
-
- /* Unpack and store one element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *px = (q15_t) in;
-
-#else
-
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Unpack and store the second element in the destination */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#else
-
- *px = (q15_t) in;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
-#else
-
- /* Read one element from the row */
- in = *pInB++;
-
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Read one element from the row */
- in = *pInB++;
-
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Read one element from the row */
- in = *pInB++;
-
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Read one element from the row */
- in = *pInB++;
-
- /* Store one element in the destination */
- *px = in;
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Decrement the column loop counter */
- col--;
- }
-
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4U;
-
- while (col > 0U)
- {
- /* Read and store the input element in the destination */
- *px = *pInB++;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
-
- /* Decrement the column loop counter */
- col--;
- }
-
- i++;
-
- /* Decrement the row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Reset the variables for the usage in the following multiplication process */
- row = numRowsA;
- i = 0U;
- px = pDst->pData;
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
- /* Process two rows from matrix A at a time and output two rows at a time */
- row = row >> 1;
- px2 = px + numColsB;
-#endif
-
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- while (row > 0U)
- {
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the transposed pSrcB data */
- pInB = pSrcBT;
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
- /* Process two (transposed) columns from matrix B at a time */
- col = col >> 1;
- j = 0;
-#endif
-
- /* column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Initiate the pointer pInA to point to the starting address of the column being processed */
- pInA = pSrcA->pData + i;
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
- sum2 = 0;
- sum3 = 0;
- sum4 = 0;
- pInB = pSrcBT + j;
- pInA2 = pInA + numColsA;
- pInB2 = pInB + numRowsB;
-
- /* Read in two elements at once - alows dual MAC instruction */
- colCnt = numColsA >> 1;
-#else
- colCnt = numColsA >> 2;
-#endif
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- inA1 = *__SIMD32(pInA)++;
- inB1 = *__SIMD32(pInB)++;
- inA2 = *__SIMD32(pInA2)++;
- inB2 = *__SIMD32(pInB2)++;
-
- sum = __SMLAD(inA1, inB1, sum);
- sum2 = __SMLAD(inA1, inB2, sum2);
- sum3 = __SMLAD(inA2, inB1, sum3);
- sum4 = __SMLAD(inA2, inB2, sum4);
-
-#else
-
- inA1 = *pInA;
- inB1 = *pInB;
- sum += inA1 * inB1;
-
- inA2 = pInA[1];
- inB2 = pInB[1];
- sum += inA2 * inB2;
-
- inA1 = pInA[2];
- inB1 = pInB[2];
- sum += inA1 * inB1;
-
- inA2 = pInA[3];
- inB2 = pInB[3];
- sum += inA2 * inB2;
-
- pInA += 4;
- pInB += 4;
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- /* process odd column samples */
-#ifndef UNALIGNED_SUPPORT_DISABLE
- if (numColsA & 1U) {
- inA1 = *pInA++;
- inB1 = *pInB++;
- inA2 = *pInA2++;
- inB2 = *pInB2++;
- sum += inA1 * inB1;
- sum2 += inA1 * inB2;
- sum3 += inA2 * inB1;
- sum4 += inA2 * inB2;
- }
-#else
- colCnt = numColsA % 0x4U;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- sum += (q31_t) (*pInA++) * (*pInB++);
-
- colCnt--;
- }
-#endif
-
- /* Saturate and store the result in the destination buffer */
- *px++ = (q15_t) (sum >> 15);
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
- *px++ = (q15_t) (sum2 >> 15);
- *px2++ = (q15_t) (sum3 >> 15);
- *px2++ = (q15_t) (sum4 >> 15);
- j += numRowsB * 2;
-#endif
-
- /* Decrement the column loop counter */
- col--;
-
- }
-
- i = i + numColsA;
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
- i = i + numColsA;
- px = px2 + (numColsB & 1U);
- px2 = px + numColsB;
-#endif
-
- /* Decrement the row loop counter */
- row--;
-
- }
-
- /* Compute any remaining odd row/column below */
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- /* Compute remaining output column */
- if (numColsB & 1U) {
-
- /* Avoid redundant computation of last element */
- row = numRowsA & (~0x1);
-
- /* Point to remaining unfilled column in output matrix */
- px = pDst->pData+numColsB-1;
- pInA = pSrcA->pData;
-
- /* row loop */
- while (row > 0)
- {
-
- /* point to last column in matrix B */
- pInB = pSrcBT + numRowsB*(numColsB-1);
-
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = *__SIMD32(pInA)++;
- inA2 = *__SIMD32(pInA)++;
- inB1 = *__SIMD32(pInB)++;
- inB2 = *__SIMD32(pInB)++;
-
- sum = __SMLAD(inA1, inB1, sum);
- sum = __SMLAD(inA2, inB2, sum);
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- colCnt = numColsA & 3U;
- while (colCnt > 0U) {
- sum += (q31_t) (*pInA++) * (*pInB++);
- colCnt--;
- }
-
- /* Store the result in the destination buffer */
- *px = (q15_t) (sum >> 15);
- px += numColsB;
-
- /* Decrement the row loop counter */
- row--;
- }
- }
-
- /* Compute remaining output row */
- if (numRowsA & 1U) {
-
- /* point to last row in output matrix */
- px = pDst->pData+(numColsB)*(numRowsA-1);
-
- pInB = pSrcBT;
- col = numColsB;
- i = 0U;
-
- /* col loop */
- while (col > 0)
- {
-
- /* point to last row in matrix A */
- pInA = pSrcA->pData + (numRowsA-1)*numColsA;
-
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = *__SIMD32(pInA)++;
- inA2 = *__SIMD32(pInA)++;
- inB1 = *__SIMD32(pInB)++;
- inB2 = *__SIMD32(pInB)++;
-
- sum = __SMLAD(inA1, inB1, sum);
- sum = __SMLAD(inA2, inB2, sum);
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- colCnt = numColsA & 3U;
- while (colCnt > 0U) {
- sum += (q31_t) (*pInA++) * (*pInB++);
- colCnt--;
- }
-
- /* Store the result in the destination buffer */
- *px++ = (q15_t) (sum >> 15);
-
- /* Decrement the col loop counter */
- col--;
- }
- }
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-/**
- * @} end of MatrixMult group
- */