summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c435
1 files changed, 0 insertions, 435 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c
deleted file mode 100644
index 7cccd4a..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_iir_lattice_f32.c
+++ /dev/null
@@ -1,435 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_iir_lattice_f32.c
- * Description: Floating-point IIR Lattice filter processing function
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @defgroup IIR_Lattice Infinite Impulse Response (IIR) Lattice Filters
- *
- * This set of functions implements lattice filters
- * for Q15, Q31 and floating-point data types. Lattice filters are used in a
- * variety of adaptive filter applications. The filter structure has feedforward and
- * feedback components and the net impulse response is infinite length.
- * The functions operate on blocks
- * of input and output data and each call to the function processes
- * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
- * <code>pDst</code> point to input and output arrays containing <code>blockSize</code> values.
-
- * \par Algorithm:
- * \image html IIRLattice.gif "Infinite Impulse Response Lattice filter"
- * <pre>
- * fN(n) = x(n)
- * fm-1(n) = fm(n) - km * gm-1(n-1) for m = N, N-1, ...1
- * gm(n) = km * fm-1(n) + gm-1(n-1) for m = N, N-1, ...1
- * y(n) = vN * gN(n) + vN-1 * gN-1(n) + ...+ v0 * g0(n)
- * </pre>
- * \par
- * <code>pkCoeffs</code> points to array of reflection coefficients of size <code>numStages</code>.
- * Reflection coefficients are stored in time-reversed order.
- * \par
- * <pre>
- * {kN, kN-1, ....k1}
- * </pre>
- * <code>pvCoeffs</code> points to the array of ladder coefficients of size <code>(numStages+1)</code>.
- * Ladder coefficients are stored in time-reversed order.
- * \par
- * <pre>
- * {vN, vN-1, ...v0}
- * </pre>
- * <code>pState</code> points to a state array of size <code>numStages + blockSize</code>.
- * The state variables shown in the figure above (the g values) are stored in the <code>pState</code> array.
- * The state variables are updated after each block of data is processed; the coefficients are untouched.
- * \par Instance Structure
- * The coefficients and state variables for a filter are stored together in an instance data structure.
- * A separate instance structure must be defined for each filter.
- * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Zeros out the values in the state buffer.
- * To do this manually without calling the init function, assign the follow subfields of the instance structure:
- * numStages, pkCoeffs, pvCoeffs, pState. Also set all of the values in pState to zero.
- *
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
- * To place an instance structure into a const data section, the instance structure must be manually initialized.
- * Set the values in the state buffer to zeros and then manually initialize the instance structure as follows:
- * <pre>
- *arm_iir_lattice_instance_f32 S = {numStages, pState, pkCoeffs, pvCoeffs};
- *arm_iir_lattice_instance_q31 S = {numStages, pState, pkCoeffs, pvCoeffs};
- *arm_iir_lattice_instance_q15 S = {numStages, pState, pkCoeffs, pvCoeffs};
- * </pre>
- * \par
- * where <code>numStages</code> is the number of stages in the filter; <code>pState</code> points to the state buffer array;
- * <code>pkCoeffs</code> points to array of the reflection coefficients; <code>pvCoeffs</code> points to the array of ladder coefficients.
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the IIR lattice filter functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
-/**
- * @addtogroup IIR_Lattice
- * @{
- */
-
-/**
- * @brief Processing function for the floating-point IIR lattice filter.
- * @param[in] *S points to an instance of the floating-point IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
-#if defined (ARM_MATH_DSP)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_iir_lattice_f32(
- const arm_iir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t fnext1, gcurr1, gnext; /* Temporary variables for lattice stages */
- float32_t acc; /* Accumlator */
- uint32_t blkCnt, tapCnt; /* temporary variables for counts */
- float32_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
- uint32_t numStages = S->numStages; /* number of stages */
- float32_t *pState; /* State pointer */
- float32_t *pStateCurnt; /* State current pointer */
- float32_t k1, k2;
- float32_t v1, v2, v3, v4;
- float32_t gcurr2;
- float32_t fnext2;
-
- /* initialise loop count */
- blkCnt = blockSize;
-
- /* initialise state pointer */
- pState = &S->pState[0];
-
- /* Sample processing */
- while (blkCnt > 0U)
- {
- /* Read Sample from input buffer */
- /* fN(n) = x(n) */
- fnext2 = *pSrc++;
-
- /* Initialize Ladder coeff pointer */
- pv = &S->pvCoeffs[0];
- /* Initialize Reflection coeff pointer */
- pk = &S->pkCoeffs[0];
-
- /* Initialize state read pointer */
- px1 = pState;
- /* Initialize state write pointer */
- px2 = pState;
-
- /* Set accumulator to zero */
- acc = 0.0;
-
- /* Loop unrolling. Process 4 taps at a time. */
- tapCnt = (numStages) >> 2;
-
- while (tapCnt > 0U)
- {
- /* Read gN-1(n-1) from state buffer */
- gcurr1 = *px1;
-
- /* read reflection coefficient kN */
- k1 = *pk;
-
- /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
- fnext1 = fnext2 - (k1 * gcurr1);
-
- /* read ladder coefficient vN */
- v1 = *pv;
-
- /* read next reflection coefficient kN-1 */
- k2 = *(pk + 1U);
-
- /* Read gN-2(n-1) from state buffer */
- gcurr2 = *(px1 + 1U);
-
- /* read next ladder coefficient vN-1 */
- v2 = *(pv + 1U);
-
- /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
- fnext2 = fnext1 - (k2 * gcurr2);
-
- /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
- gnext = gcurr1 + (k1 * fnext1);
-
- /* read reflection coefficient kN-2 */
- k1 = *(pk + 2U);
-
- /* write gN(n) into state for next sample processing */
- *px2++ = gnext;
-
- /* Read gN-3(n-1) from state buffer */
- gcurr1 = *(px1 + 2U);
-
- /* y(n) += gN(n) * vN */
- acc += (gnext * v1);
-
- /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
- fnext1 = fnext2 - (k1 * gcurr1);
-
- /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
- gnext = gcurr2 + (k2 * fnext2);
-
- /* Read gN-4(n-1) from state buffer */
- gcurr2 = *(px1 + 3U);
-
- /* y(n) += gN-1(n) * vN-1 */
- acc += (gnext * v2);
-
- /* read reflection coefficient kN-3 */
- k2 = *(pk + 3U);
-
- /* write gN-1(n) into state for next sample processing */
- *px2++ = gnext;
-
- /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
- fnext2 = fnext1 - (k2 * gcurr2);
-
- /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
- gnext = gcurr1 + (k1 * fnext1);
-
- /* read ladder coefficient vN-2 */
- v3 = *(pv + 2U);
-
- /* y(n) += gN-2(n) * vN-2 */
- acc += (gnext * v3);
-
- /* write gN-2(n) into state for next sample processing */
- *px2++ = gnext;
-
- /* update pointer */
- pk += 4U;
-
- /* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */
- gnext = (fnext2 * k2) + gcurr2;
-
- /* read next ladder coefficient vN-3 */
- v4 = *(pv + 3U);
-
- /* y(n) += gN-4(n) * vN-4 */
- acc += (gnext * v4);
-
- /* write gN-3(n) into state for next sample processing */
- *px2++ = gnext;
-
- /* update pointers */
- px1 += 4U;
- pv += 4U;
-
- tapCnt--;
-
- }
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = (numStages) % 0x4U;
-
- while (tapCnt > 0U)
- {
- gcurr1 = *px1++;
- /* Process sample for last taps */
- fnext1 = fnext2 - ((*pk) * gcurr1);
- gnext = (fnext1 * (*pk++)) + gcurr1;
- /* Output samples for last taps */
- acc += (gnext * (*pv++));
- *px2++ = gnext;
- fnext2 = fnext1;
-
- tapCnt--;
-
- }
-
- /* y(n) += g0(n) * v0 */
- acc += (fnext2 * (*pv));
-
- *px2++ = fnext2;
-
- /* write out into pDst */
- *pDst++ = acc;
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 1U;
-
- blkCnt--;
-
- }
-
- /* Processing is complete. Now copy last S->numStages samples to start of the buffer
- for the preperation of next frame process */
-
- /* Points to the start of the state buffer */
- pStateCurnt = &S->pState[0];
- pState = &S->pState[blockSize];
-
- tapCnt = numStages >> 2U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
-
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numStages) % 0x4U;
-
- /* Copy the remaining q31_t data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#else
-
-void arm_iir_lattice_f32(
- const arm_iir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t fcurr, fnext = 0, gcurr, gnext; /* Temporary variables for lattice stages */
- float32_t acc; /* Accumlator */
- uint32_t blkCnt, tapCnt; /* temporary variables for counts */
- float32_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
- uint32_t numStages = S->numStages; /* number of stages */
- float32_t *pState; /* State pointer */
- float32_t *pStateCurnt; /* State current pointer */
-
-
- /* Run the below code for Cortex-M0 */
-
- blkCnt = blockSize;
-
- pState = &S->pState[0];
-
- /* Sample processing */
- while (blkCnt > 0U)
- {
- /* Read Sample from input buffer */
- /* fN(n) = x(n) */
- fcurr = *pSrc++;
-
- /* Initialize state read pointer */
- px1 = pState;
- /* Initialize state write pointer */
- px2 = pState;
- /* Set accumulator to zero */
- acc = 0.0f;
- /* Initialize Ladder coeff pointer */
- pv = &S->pvCoeffs[0];
- /* Initialize Reflection coeff pointer */
- pk = &S->pkCoeffs[0];
-
-
- /* Process sample for numStages */
- tapCnt = numStages;
-
- while (tapCnt > 0U)
- {
- gcurr = *px1++;
- /* Process sample for last taps */
- fnext = fcurr - ((*pk) * gcurr);
- gnext = (fnext * (*pk++)) + gcurr;
-
- /* Output samples for last taps */
- acc += (gnext * (*pv++));
- *px2++ = gnext;
- fcurr = fnext;
-
- /* Decrementing loop counter */
- tapCnt--;
-
- }
-
- /* y(n) += g0(n) * v0 */
- acc += (fnext * (*pv));
-
- *px2++ = fnext;
-
- /* write out into pDst */
- *pDst++ = acc;
-
- /* Advance the state pointer by 1 to process the next group of samples */
- pState = pState + 1U;
- blkCnt--;
-
- }
-
- /* Processing is complete. Now copy last S->numStages samples to start of the buffer
- for the preperation of next frame process */
-
- /* Points to the start of the state buffer */
- pStateCurnt = &S->pState[0];
- pState = &S->pState[blockSize];
-
- tapCnt = numStages;
-
- /* Copy the data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
-
-/**
- * @} end of IIR_Lattice group
- */