summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c433
1 files changed, 0 insertions, 433 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
deleted file mode 100644
index fe9aacd..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_sparse_f32.c
+++ /dev/null
@@ -1,433 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_fir_sparse_f32.c
- * Description: Floating-point sparse FIR filter processing function
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @defgroup FIR_Sparse Finite Impulse Response (FIR) Sparse Filters
- *
- * This group of functions implements sparse FIR filters.
- * Sparse FIR filters are equivalent to standard FIR filters except that most of the coefficients are equal to zero.
- * Sparse filters are used for simulating reflections in communications and audio applications.
- *
- * There are separate functions for Q7, Q15, Q31, and floating-point data types.
- * The functions operate on blocks of input and output data and each call to the function processes
- * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
- * <code>pDst</code> points to input and output arrays respectively containing <code>blockSize</code> values.
- *
- * \par Algorithm:
- * The sparse filter instant structure contains an array of tap indices <code>pTapDelay</code> which specifies the locations of the non-zero coefficients.
- * This is in addition to the coefficient array <code>b</code>.
- * The implementation essentially skips the multiplications by zero and leads to an efficient realization.
- * <pre>
- * y[n] = b[0] * x[n-pTapDelay[0]] + b[1] * x[n-pTapDelay[1]] + b[2] * x[n-pTapDelay[2]] + ...+ b[numTaps-1] * x[n-pTapDelay[numTaps-1]]
- * </pre>
- * \par
- * \image html FIRSparse.gif "Sparse FIR filter. b[n] represents the filter coefficients"
- * \par
- * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>;
- * <code>pTapDelay</code> points to an array of nonzero indices and is also of size <code>numTaps</code>;
- * <code>pState</code> points to a state array of size <code>maxDelay + blockSize</code>, where
- * <code>maxDelay</code> is the largest offset value that is ever used in the <code>pTapDelay</code> array.
- * Some of the processing functions also require temporary working buffers.
- *
- * \par Instance Structure
- * The coefficients and state variables for a filter are stored together in an instance data structure.
- * A separate instance structure must be defined for each filter.
- * Coefficient and offset arrays may be shared among several instances while state variable arrays cannot be shared.
- * There are separate instance structure declarations for each of the 4 supported data types.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Zeros out the values in the state buffer.
- * To do this manually without calling the init function, assign the follow subfields of the instance structure:
- * numTaps, pCoeffs, pTapDelay, maxDelay, stateIndex, pState. Also set all of the values in pState to zero.
- *
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
- * To place an instance structure into a const data section, the instance structure must be manually initialized.
- * Set the values in the state buffer to zeros before static initialization.
- * The code below statically initializes each of the 4 different data type filter instance structures
- * <pre>
- *arm_fir_sparse_instance_f32 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
- *arm_fir_sparse_instance_q31 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
- *arm_fir_sparse_instance_q15 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
- *arm_fir_sparse_instance_q7 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};
- * </pre>
- * \par
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the sparse FIR filter functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
-/**
- * @addtogroup FIR_Sparse
- * @{
- */
-
-/**
- * @brief Processing function for the floating-point sparse FIR filter.
- * @param[in] *S points to an instance of the floating-point sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
-void arm_fir_sparse_f32(
- arm_fir_sparse_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- float32_t * pScratchIn,
- uint32_t blockSize)
-{
-
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *px; /* Scratch buffer pointer */
- float32_t *py = pState; /* Temporary pointers for state buffer */
- float32_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
- float32_t *pOut; /* Destination pointer */
- int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
- uint32_t delaySize = S->maxDelay + blockSize; /* state length */
- uint16_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- int32_t readIndex; /* Read index of the state buffer */
- uint32_t tapCnt, blkCnt; /* loop counters */
- float32_t coeff = *pCoeffs++; /* Read the first coefficient value */
-
-
-
- /* BlockSize of Input samples are copied into the state buffer */
- /* StateIndex points to the starting position to write in the state buffer */
- arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
- (int32_t *) pSrc, 1, blockSize);
-
-
- /* Read Index, from where the state buffer should be read, is calculated. */
- readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
-
- /* Wraparound of readIndex */
- if (readIndex < 0)
- {
- readIndex += (int32_t) delaySize;
- }
-
- /* Working pointer for state buffer is updated */
- py = pState;
-
- /* blockSize samples are read from the state buffer */
- arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
- (int32_t *) pb, (int32_t *) pb, blockSize, 1,
- blockSize);
-
- /* Working pointer for the scratch buffer */
- px = pb;
-
- /* Working pointer for destination buffer */
- pOut = pDst;
-
-
-#if defined (ARM_MATH_DSP)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- /* Loop over the blockSize. Unroll by a factor of 4.
- * Compute 4 Multiplications at a time. */
- blkCnt = blockSize >> 2U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiplications and store in destination buffer */
- *pOut++ = *px++ * coeff;
- *pOut++ = *px++ * coeff;
- *pOut++ = *px++ * coeff;
- *pOut++ = *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4,
- * compute the remaining samples */
- blkCnt = blockSize % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiplications and store in destination buffer */
- *pOut++ = *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Load the coefficient value and
- * increment the coefficient buffer for the next set of state values */
- coeff = *pCoeffs++;
-
- /* Read Index, from where the state buffer should be read, is calculated. */
- readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
-
- /* Wraparound of readIndex */
- if (readIndex < 0)
- {
- readIndex += (int32_t) delaySize;
- }
-
- /* Loop over the number of taps. */
- tapCnt = (uint32_t) numTaps - 2U;
-
- while (tapCnt > 0U)
- {
-
- /* Working pointer for state buffer is updated */
- py = pState;
-
- /* blockSize samples are read from the state buffer */
- arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
- (int32_t *) pb, (int32_t *) pb, blockSize, 1,
- blockSize);
-
- /* Working pointer for the scratch buffer */
- px = pb;
-
- /* Working pointer for destination buffer */
- pOut = pDst;
-
- /* Loop over the blockSize. Unroll by a factor of 4.
- * Compute 4 MACS at a time. */
- blkCnt = blockSize >> 2U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4,
- * compute the remaining samples */
- blkCnt = blockSize % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Load the coefficient value and
- * increment the coefficient buffer for the next set of state values */
- coeff = *pCoeffs++;
-
- /* Read Index, from where the state buffer should be read, is calculated. */
- readIndex = ((int32_t) S->stateIndex -
- (int32_t) blockSize) - *pTapDelay++;
-
- /* Wraparound of readIndex */
- if (readIndex < 0)
- {
- readIndex += (int32_t) delaySize;
- }
-
- /* Decrement the tap loop counter */
- tapCnt--;
- }
-
- /* Compute last tap without the final read of pTapDelay */
-
- /* Working pointer for state buffer is updated */
- py = pState;
-
- /* blockSize samples are read from the state buffer */
- arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
- (int32_t *) pb, (int32_t *) pb, blockSize, 1,
- blockSize);
-
- /* Working pointer for the scratch buffer */
- px = pb;
-
- /* Working pointer for destination buffer */
- pOut = pDst;
-
- /* Loop over the blockSize. Unroll by a factor of 4.
- * Compute 4 MACS at a time. */
- blkCnt = blockSize >> 2U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4,
- * compute the remaining samples */
- blkCnt = blockSize % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
-#else
-
-/* Run the below code for Cortex-M0 */
-
- blkCnt = blockSize;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiplications and store in destination buffer */
- *pOut++ = *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Load the coefficient value and
- * increment the coefficient buffer for the next set of state values */
- coeff = *pCoeffs++;
-
- /* Read Index, from where the state buffer should be read, is calculated. */
- readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
-
- /* Wraparound of readIndex */
- if (readIndex < 0)
- {
- readIndex += (int32_t) delaySize;
- }
-
- /* Loop over the number of taps. */
- tapCnt = (uint32_t) numTaps - 2U;
-
- while (tapCnt > 0U)
- {
-
- /* Working pointer for state buffer is updated */
- py = pState;
-
- /* blockSize samples are read from the state buffer */
- arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
- (int32_t *) pb, (int32_t *) pb, blockSize, 1,
- blockSize);
-
- /* Working pointer for the scratch buffer */
- px = pb;
-
- /* Working pointer for destination buffer */
- pOut = pDst;
-
- blkCnt = blockSize;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Load the coefficient value and
- * increment the coefficient buffer for the next set of state values */
- coeff = *pCoeffs++;
-
- /* Read Index, from where the state buffer should be read, is calculated. */
- readIndex =
- ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
-
- /* Wraparound of readIndex */
- if (readIndex < 0)
- {
- readIndex += (int32_t) delaySize;
- }
-
- /* Decrement the tap loop counter */
- tapCnt--;
- }
-
- /* Compute last tap without the final read of pTapDelay */
-
- /* Working pointer for state buffer is updated */
- py = pState;
-
- /* blockSize samples are read from the state buffer */
- arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
- (int32_t *) pb, (int32_t *) pb, blockSize, 1,
- blockSize);
-
- /* Working pointer for the scratch buffer */
- px = pb;
-
- /* Working pointer for destination buffer */
- pOut = pDst;
-
- blkCnt = blockSize;
-
- while (blkCnt > 0U)
- {
- /* Perform Multiply-Accumulate */
- *pOut++ += *px++ * coeff;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
-}
-
-/**
- * @} end of FIR_Sparse group
- */