summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c492
1 files changed, 0 insertions, 492 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c
deleted file mode 100644
index 2c0f522..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_q31.c
+++ /dev/null
@@ -1,492 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_fir_interpolate_q31.c
- * Description: Q31 FIR interpolation
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR_Interpolate
- * @{
- */
-
-/**
- * @brief Processing function for the Q31 FIR interpolator.
- * @param[in] *S points to an instance of the Q31 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>.
- * since <code>numTaps/L</code> additions occur per output sample.
- * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
- */
-
-#if defined (ARM_MATH_DSP)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_fir_interpolate_q31(
- const arm_fir_interpolate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
-{
- q31_t *pState = S->pState; /* State pointer */
- q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q31_t *pStateCurnt; /* Points to the current sample of the state */
- q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
- q63_t sum0; /* Accumulators */
- q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t i, blkCnt, j; /* Loop counters */
- uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
-
- uint32_t blkCntN2;
- q63_t acc0, acc1;
- q31_t x1;
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
-
- /* Initialise blkCnt */
- blkCnt = blockSize / 2;
- blkCntN2 = blockSize - (2 * blkCnt);
-
- /* Samples loop unrolled by 2 */
- while (blkCnt > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1U;
-
- /* Loop over the Interpolation factor. */
- i = (S->L);
-
- while (i > 0U)
- {
- /* Set accumulator to zero */
- acc0 = 0;
- acc1 = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2U;
-
- x0 = *(ptr1++);
-
- while (tapCnt > 0U)
- {
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L);
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x1 *c0;
- acc1 += (q63_t) x0 *c0;
-
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L * 2);
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L * 3);
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x1 *c0;
- acc1 += (q63_t) x0 *c0;
-
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += 4 * S->L;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen % 0x4U;
-
- while (tapCnt > 0U)
- {
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* update states for next sample processing */
- x0 = x1;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst = (q31_t) (acc0 >> 31);
- *(pDst + S->L) = (q31_t) (acc1 >> 31);
-
-
- pDst++;
-
- /* Increment the address modifier index of coefficient buffer */
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 2;
-
- pDst += S->L;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blkCntN2;
-
- /* Loop over the blockSize. */
- while (blkCnt > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1U;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
- while (i > 0U)
- {
- /* Set accumulator to zero */
- sum0 = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2;
- while (tapCnt > 0U)
- {
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen & 0x3U;
-
- while (tapCnt > 0U)
- {
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst++ = (q31_t) (sum0 >> 31);
-
- /* Increment the address modifier index of coefficient buffer */
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (phaseLen - 1U) >> 2U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- tapCnt = (phaseLen - 1U) % 0x04U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-
-#else
-
-void arm_fir_interpolate_q31(
- const arm_fir_interpolate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
-{
- q31_t *pState = S->pState; /* State pointer */
- q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q31_t *pStateCurnt; /* Points to the current sample of the state */
- q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
-
- /* Run the below code for Cortex-M0 */
-
- q63_t sum; /* Accumulator */
- q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t i, blkCnt; /* Loop counters */
- uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
-
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
-
- /* Total number of intput samples */
- blkCnt = blockSize;
-
- /* Loop over the blockSize. */
- while (blkCnt > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
-
- while (i > 0U)
- {
- /* Set accumulator to zero */
- sum = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (i - 1U);
-
- tapCnt = phaseLen;
-
- while (tapCnt > 0U)
- {
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *ptr1++;
-
- /* Perform the multiply-accumulate */
- sum += (q63_t) x0 *c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst++ = (q31_t) (sum >> 31);
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = phaseLen - 1U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /**
- * @} end of FIR_Interpolate group
- */