summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c569
1 files changed, 0 insertions, 569 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c
deleted file mode 100644
index 5f9d19c..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_interpolate_f32.c
+++ /dev/null
@@ -1,569 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_fir_interpolate_f32.c
- * Description: Floating-point FIR interpolation sequences
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @defgroup FIR_Interpolate Finite Impulse Response (FIR) Interpolator
- *
- * These functions combine an upsampler (zero stuffer) and an FIR filter.
- * They are used in multirate systems for increasing the sample rate of a signal without introducing high frequency images.
- * Conceptually, the functions are equivalent to the block diagram below:
- * \image html FIRInterpolator.gif "Components included in the FIR Interpolator functions"
- * After upsampling by a factor of <code>L</code>, the signal should be filtered by a lowpass filter with a normalized
- * cutoff frequency of <code>1/L</code> in order to eliminate high frequency copies of the spectrum.
- * The user of the function is responsible for providing the filter coefficients.
- *
- * The FIR interpolator functions provided in the CMSIS DSP Library combine the upsampler and FIR filter in an efficient manner.
- * The upsampler inserts <code>L-1</code> zeros between each sample.
- * Instead of multiplying by these zero values, the FIR filter is designed to skip them.
- * This leads to an efficient implementation without any wasted effort.
- * The functions operate on blocks of input and output data.
- * <code>pSrc</code> points to an array of <code>blockSize</code> input values and
- * <code>pDst</code> points to an array of <code>blockSize*L</code> output values.
- *
- * The library provides separate functions for Q15, Q31, and floating-point data types.
- *
- * \par Algorithm:
- * The functions use a polyphase filter structure:
- * <pre>
- * y[n] = b[0] * x[n] + b[L] * x[n-1] + ... + b[L*(phaseLength-1)] * x[n-phaseLength+1]
- * y[n+1] = b[1] * x[n] + b[L+1] * x[n-1] + ... + b[L*(phaseLength-1)+1] * x[n-phaseLength+1]
- * ...
- * y[n+(L-1)] = b[L-1] * x[n] + b[2*L-1] * x[n-1] + ....+ b[L*(phaseLength-1)+(L-1)] * x[n-phaseLength+1]
- * </pre>
- * This approach is more efficient than straightforward upsample-then-filter algorithms.
- * With this method the computation is reduced by a factor of <code>1/L</code> when compared to using a standard FIR filter.
- * \par
- * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
- * <code>numTaps</code> must be a multiple of the interpolation factor <code>L</code> and this is checked by the
- * initialization functions.
- * Internally, the function divides the FIR filter's impulse response into shorter filters of length
- * <code>phaseLength=numTaps/L</code>.
- * Coefficients are stored in time reversed order.
- * \par
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * \par
- * <code>pState</code> points to a state array of size <code>blockSize + phaseLength - 1</code>.
- * Samples in the state buffer are stored in the order:
- * \par
- * <pre>
- * {x[n-phaseLength+1], x[n-phaseLength], x[n-phaseLength-1], x[n-phaseLength-2]....x[0], x[1], ..., x[blockSize-1]}
- * </pre>
- * The state variables are updated after each block of data is processed, the coefficients are untouched.
- *
- * \par Instance Structure
- * The coefficients and state variables for a filter are stored together in an instance data structure.
- * A separate instance structure must be defined for each filter.
- * Coefficient arrays may be shared among several instances while state variable array should be allocated separately.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Zeros out the values in the state buffer.
- * - Checks to make sure that the length of the filter is a multiple of the interpolation factor.
- * To do this manually without calling the init function, assign the follow subfields of the instance structure:
- * L (interpolation factor), pCoeffs, phaseLength (numTaps / L), pState. Also set all of the values in pState to zero.
- *
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
- * To place an instance structure into a const data section, the instance structure must be manually initialized.
- * The code below statically initializes each of the 3 different data type filter instance structures
- * <pre>
- * arm_fir_interpolate_instance_f32 S = {L, phaseLength, pCoeffs, pState};
- * arm_fir_interpolate_instance_q31 S = {L, phaseLength, pCoeffs, pState};
- * arm_fir_interpolate_instance_q15 S = {L, phaseLength, pCoeffs, pState};
- * </pre>
- * where <code>L</code> is the interpolation factor; <code>phaseLength=numTaps/L</code> is the
- * length of each of the shorter FIR filters used internally,
- * <code>pCoeffs</code> is the address of the coefficient buffer;
- * <code>pState</code> is the address of the state buffer.
- * Be sure to set the values in the state buffer to zeros when doing static initialization.
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the FIR interpolate filter functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
-/**
- * @addtogroup FIR_Interpolate
- * @{
- */
-
-/**
- * @brief Processing function for the floating-point FIR interpolator.
- * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-#if defined (ARM_MATH_DSP)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_fir_interpolate_f32(
- const arm_fir_interpolate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
- float32_t sum0; /* Accumulators */
- float32_t x0, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t i, blkCnt, j; /* Loop counters */
- uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
- float32_t acc0, acc1, acc2, acc3;
- float32_t x1, x2, x3;
- uint32_t blkCntN4;
- float32_t c1, c2, c3;
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + (phaseLen - 1U);
-
- /* Initialise blkCnt */
- blkCnt = blockSize / 4;
- blkCntN4 = blockSize - (4 * blkCnt);
-
- /* Samples loop unrolled by 4 */
- while (blkCnt > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1U;
-
- /* Loop over the Interpolation factor. */
- i = (S->L);
-
- while (i > 0U)
- {
- /* Set accumulator to zero */
- acc0 = 0.0f;
- acc1 = 0.0f;
- acc2 = 0.0f;
- acc3 = 0.0f;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2U;
-
- x0 = *(ptr1++);
- x1 = *(ptr1++);
- x2 = *(ptr1++);
-
- while (tapCnt > 0U)
- {
-
- /* Read the input sample */
- x3 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += x0 * c0;
- acc1 += x1 * c0;
- acc2 += x2 * c0;
- acc3 += x3 * c0;
-
- /* Read the coefficient */
- c1 = *(ptr2 + S->L);
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += x1 * c1;
- acc1 += x2 * c1;
- acc2 += x3 * c1;
- acc3 += x0 * c1;
-
- /* Read the coefficient */
- c2 = *(ptr2 + S->L * 2);
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += x2 * c2;
- acc1 += x3 * c2;
- acc2 += x0 * c2;
- acc3 += x1 * c2;
-
- /* Read the coefficient */
- c3 = *(ptr2 + S->L * 3);
-
- /* Read the input sample */
- x2 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += x3 * c3;
- acc1 += x0 * c3;
- acc2 += x1 * c3;
- acc3 += x2 * c3;
-
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += 4 * S->L;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen % 0x4U;
-
- while (tapCnt > 0U)
- {
-
- /* Read the input sample */
- x3 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += x0 * c0;
- acc1 += x1 * c0;
- acc2 += x2 * c0;
- acc3 += x3 * c0;
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* update states for next sample processing */
- x0 = x1;
- x1 = x2;
- x2 = x3;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst = acc0;
- *(pDst + S->L) = acc1;
- *(pDst + 2 * S->L) = acc2;
- *(pDst + 3 * S->L) = acc3;
-
- pDst++;
-
- /* Increment the address modifier index of coefficient buffer */
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 4;
-
- pDst += S->L * 3;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
-
- while (blkCntN4 > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1U;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
- while (i > 0U)
- {
- /* Set accumulator to zero */
- sum0 = 0.0f;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2U;
- while (tapCnt > 0U)
- {
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += x0 * c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += x0 * c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += x0 * c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += x0 * c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen % 0x4U;
-
- while (tapCnt > 0U)
- {
- /* Perform the multiply-accumulate */
- sum0 += *(ptr1++) * (*ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst++ = sum0;
-
- /* Increment the address modifier index of coefficient buffer */
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCntN4--;
- }
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (phaseLen - 1U) >> 2U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- tapCnt = (phaseLen - 1U) % 0x04U;
-
- /* copy data */
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
-void arm_fir_interpolate_f32(
- const arm_fir_interpolate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
-
-
- float32_t sum; /* Accumulator */
- uint32_t i, blkCnt; /* Loop counters */
- uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
-
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + (phaseLen - 1U);
-
- /* Total number of intput samples */
- blkCnt = blockSize;
-
- /* Loop over the blockSize. */
- while (blkCnt > 0U)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
-
- while (i > 0U)
- {
- /* Set accumulator to zero */
- sum = 0.0f;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (i - 1U);
-
- /* Loop over the polyPhase length */
- tapCnt = phaseLen;
-
- while (tapCnt > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += *ptr1++ * *ptr2;
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst++ = sum;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = phaseLen - 1U;
-
- while (tapCnt > 0U)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
-
-
- /**
- * @} end of FIR_Interpolate group
- */