summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c1307
1 files changed, 0 insertions, 1307 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c
deleted file mode 100644
index 7b676d0..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_correlate_fast_q15.c
+++ /dev/null
@@ -1,1307 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_correlate_fast_q15.c
- * Description: Fast Q15 Correlation
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup Corr
- * @{
- */
-
-/**
- * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * This fast version uses a 32-bit accumulator with 2.30 format.
- * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * There is no saturation on intermediate additions.
- * Thus, if the accumulator overflows it wraps around and distorts the result.
- * The input signals should be scaled down to avoid intermediate overflows.
- * Scale down one of the inputs by 1/min(srcALen, srcBLen) to avoid overflow since a
- * maximum of min(srcALen, srcBLen) number of additions is carried internally.
- * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
- *
- * \par
- * See <code>arm_correlate_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
- */
-
-void arm_correlate_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst)
-{
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
- uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
- int32_t inc = 1; /* Destination address modifier */
-
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- /* But CORR(x, y) is reverse of CORR(y, x) */
- /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
- /* and the destination pointer modifier, inc is set to -1 */
- /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
- /* But to improve the performance,
- * we include zeroes in the output instead of zero padding either of the the inputs*/
- /* If srcALen > srcBLen,
- * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
- /* If srcALen < srcBLen,
- * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
- if (srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = (pSrcA);
-
- /* Initialization of inputB pointer */
- pIn2 = (pSrcB);
-
- /* Number of output samples is calculated */
- outBlockSize = (2U * srcALen) - 1U;
-
- /* When srcALen > srcBLen, zero padding is done to srcB
- * to make their lengths equal.
- * Instead, (outBlockSize - (srcALen + srcBLen - 1))
- * number of output samples are made zero */
- j = outBlockSize - (srcALen + (srcBLen - 1U));
-
- /* Updating the pointer position to non zero value */
- pOut += j;
-
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = (pSrcB);
-
- /* Initialization of inputB pointer */
- pIn2 = (pSrcA);
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
-
- /* CORR(x, y) = Reverse order(CORR(y, x)) */
- /* Hence set the destination pointer to point to the last output sample */
- pOut = pDst + ((srcALen + srcBLen) - 2U);
-
- /* Destination address modifier is set to -1 */
- inc = -1;
-
- }
-
- /* The function is internally
- * divided into three parts according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first part of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second part of the algorithm, srcBLen number of multiplications are done.
- * In the third part of the algorithm, the multiplications decrease by one
- * for every iteration.*/
- /* The algorithm is implemented in three stages.
- * The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1U;
- blockSize2 = srcALen - (srcBLen - 1U);
- blockSize3 = blockSize1;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[srcBlen - 1]
- * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
- * ....
- * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1U;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc1 = pIn2 + (srcBLen - 1U);
- py = pSrc1;
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* The first loop starts here */
- while (blockSize1 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
- sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
- /* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */
- sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* x[0] * y[srcBLen - 1] */
- sum = __SMLAD(*px++, *py++, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pSrc1 - count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
- * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
- /* count is index by which the pointer pIn1 to be incremented */
- count = 0U;
-
- /* -------------------
- * Stage2 process
- * ------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
- if (srcBLen >= 4U)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2U;
-
- while (blkCnt > 0U)
- {
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* read x[0], x[1] samples */
- x0 = *__SIMD32(px);
- /* read x[1], x[2] samples */
- x1 = _SIMD32_OFFSET(px + 1);
- px += 2U;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the first two inputB samples using SIMD:
- * y[0] and y[1] */
- c0 = *__SIMD32(py)++;
-
- /* acc0 += x[0] * y[0] + x[1] * y[1] */
- acc0 = __SMLAD(x0, c0, acc0);
-
- /* acc1 += x[1] * y[0] + x[2] * y[1] */
- acc1 = __SMLAD(x1, c0, acc1);
-
- /* Read x[2], x[3] */
- x2 = *__SIMD32(px);
-
- /* Read x[3], x[4] */
- x3 = _SIMD32_OFFSET(px + 1);
-
- /* acc2 += x[2] * y[0] + x[3] * y[1] */
- acc2 = __SMLAD(x2, c0, acc2);
-
- /* acc3 += x[3] * y[0] + x[4] * y[1] */
- acc3 = __SMLAD(x3, c0, acc3);
-
- /* Read y[2] and y[3] */
- c0 = *__SIMD32(py)++;
-
- /* acc0 += x[2] * y[2] + x[3] * y[3] */
- acc0 = __SMLAD(x2, c0, acc0);
-
- /* acc1 += x[3] * y[2] + x[4] * y[3] */
- acc1 = __SMLAD(x3, c0, acc1);
-
- /* Read x[4], x[5] */
- x0 = _SIMD32_OFFSET(px + 2);
-
- /* Read x[5], x[6] */
- x1 = _SIMD32_OFFSET(px + 3);
- px += 4U;
-
- /* acc2 += x[4] * y[2] + x[5] * y[3] */
- acc2 = __SMLAD(x0, c0, acc2);
-
- /* acc3 += x[5] * y[2] + x[6] * y[3] */
- acc3 = __SMLAD(x1, c0, acc3);
-
- } while (--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- if (k == 1U)
- {
- /* Read y[4] */
- c0 = *py;
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7] */
- x3 = *__SIMD32(px);
- px++;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLADX(x1, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- if (k == 2U)
- {
- /* Read y[4], y[5] */
- c0 = *__SIMD32(py);
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px + 1);
- px += 2U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLAD(x3, c0, acc2);
- acc3 = __SMLAD(x2, c0, acc3);
- }
-
- if (k == 3U)
- {
- /* Read y[4], y[5] */
- c0 = *__SIMD32(py)++;
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px + 1);
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLAD(x3, c0, acc2);
- acc3 = __SMLAD(x2, c0, acc3);
-
- c0 = (*py);
- /* Read y[6] */
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[10] */
- x3 = _SIMD32_OFFSET(px + 2);
- px += 3U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x1, c0, acc0);
- acc1 = __SMLAD(x2, c0, acc1);
- acc2 = __SMLADX(x2, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (acc0 >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- *pOut = (q15_t) (acc1 >> 15);
- pOut += inc;
-
- *pOut = (q15_t) (acc2 >> 15);
- pOut += inc;
-
- *pOut = (q15_t) (acc3 >> 15);
- pOut += inc;
-
- /* Increment the pointer pIn1 index, count by 1 */
- count += 4U;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over srcBLen */
- k = srcBLen;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- * ....
- * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
- * sum += x[srcALen-1] * y[0]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = srcBLen - 1U;
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
- px = pSrc1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- while (blockSize3 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */
- sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
- /* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */
- sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum = __SMLAD(*px++, *py++, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
- uint32_t j, k = 0U, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
- int32_t inc = 1; /* Destination address modifier */
- q15_t a, b;
-
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- /* But CORR(x, y) is reverse of CORR(y, x) */
- /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
- /* and the destination pointer modifier, inc is set to -1 */
- /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
- /* But to improve the performance,
- * we include zeroes in the output instead of zero padding either of the the inputs*/
- /* If srcALen > srcBLen,
- * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
- /* If srcALen < srcBLen,
- * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
- if (srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = (pSrcA);
-
- /* Initialization of inputB pointer */
- pIn2 = (pSrcB);
-
- /* Number of output samples is calculated */
- outBlockSize = (2U * srcALen) - 1U;
-
- /* When srcALen > srcBLen, zero padding is done to srcB
- * to make their lengths equal.
- * Instead, (outBlockSize - (srcALen + srcBLen - 1))
- * number of output samples are made zero */
- j = outBlockSize - (srcALen + (srcBLen - 1U));
-
- /* Updating the pointer position to non zero value */
- pOut += j;
-
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = (pSrcB);
-
- /* Initialization of inputB pointer */
- pIn2 = (pSrcA);
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
-
- /* CORR(x, y) = Reverse order(CORR(y, x)) */
- /* Hence set the destination pointer to point to the last output sample */
- pOut = pDst + ((srcALen + srcBLen) - 2U);
-
- /* Destination address modifier is set to -1 */
- inc = -1;
-
- }
-
- /* The function is internally
- * divided into three parts according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first part of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second part of the algorithm, srcBLen number of multiplications are done.
- * In the third part of the algorithm, the multiplications decrease by one
- * for every iteration.*/
- /* The algorithm is implemented in three stages.
- * The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1U;
- blockSize2 = srcALen - (srcBLen - 1U);
- blockSize3 = blockSize1;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[srcBlen - 1]
- * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
- * ....
- * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1U;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc1 = pIn2 + (srcBLen - 1U);
- py = pSrc1;
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* The first loop starts here */
- while (blockSize1 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* x[0] * y[srcBLen - 1] */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pSrc1 - count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
- * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
- /* count is index by which the pointer pIn1 to be incremented */
- count = 0U;
-
- /* -------------------
- * Stage2 process
- * ------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
- if (srcBLen >= 4U)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2U;
-
- while (blkCnt > 0U)
- {
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* read x[0], x[1], x[2] samples */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 2U;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the first two inputB samples using SIMD:
- * y[0] and y[1] */
- a = *py;
- b = *(py + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[0] * y[0] + x[1] * y[1] */
- acc0 = __SMLAD(x0, c0, acc0);
-
- /* acc1 += x[1] * y[0] + x[2] * y[1] */
- acc1 = __SMLAD(x1, c0, acc1);
-
- /* Read x[2], x[3], x[4] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x2 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x3 = __PKHBT(b, a, 16);
-
-#else
-
- x2 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x3 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc2 += x[2] * y[0] + x[3] * y[1] */
- acc2 = __SMLAD(x2, c0, acc2);
-
- /* acc3 += x[3] * y[0] + x[4] * y[1] */
- acc3 = __SMLAD(x3, c0, acc3);
-
- /* Read y[2] and y[3] */
- a = *(py + 2);
- b = *(py + 3);
-
- py += 4U;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[2] * y[2] + x[3] * y[3] */
- acc0 = __SMLAD(x2, c0, acc0);
-
- /* acc1 += x[3] * y[2] + x[4] * y[3] */
- acc1 = __SMLAD(x3, c0, acc1);
-
- /* Read x[4], x[5], x[6] */
- a = *(px + 2);
- b = *(px + 3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *(px + 4);
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *(px + 4);
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 4U;
-
- /* acc2 += x[4] * y[2] + x[5] * y[3] */
- acc2 = __SMLAD(x0, c0, acc2);
-
- /* acc3 += x[5] * y[2] + x[6] * y[3] */
- acc3 = __SMLAD(x1, c0, acc3);
-
- } while (--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- if (k == 1U)
- {
- /* Read y[4] */
- c0 = *py;
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7] */
- a = *px;
- b = *(px + 1);
-
- px++;;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px++;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLADX(x1, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- if (k == 2U)
- {
- /* Read y[4], y[5] */
- a = *py;
- b = *(py + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 2U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLAD(x3, c0, acc2);
- acc3 = __SMLAD(x2, c0, acc3);
- }
-
- if (k == 3U)
- {
- /* Read y[4], y[5] */
- a = *py;
- b = *(py + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- py += 2U;
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLAD(x3, c0, acc2);
- acc3 = __SMLAD(x2, c0, acc3);
-
- c0 = (*py);
- /* Read y[6] */
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[10] */
- b = *(px + 3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 3U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x1, c0, acc0);
- acc1 = __SMLAD(x2, c0, acc1);
- acc2 = __SMLADX(x2, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (acc0 >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- *pOut = (q15_t) (acc1 >> 15);
- pOut += inc;
-
- *pOut = (q15_t) (acc2 >> 15);
- pOut += inc;
-
- *pOut = (q15_t) (acc3 >> 15);
- pOut += inc;
-
- /* Increment the pointer pIn1 index, count by 1 */
- count += 4U;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over srcBLen */
- k = srcBLen;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pIn2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
- * ....
- * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
- * sum += x[srcALen-1] * y[0]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = srcBLen - 1U;
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
- px = pSrc1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- while (blockSize3 > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py++);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut = (q15_t) (sum >> 15);
- /* Destination pointer is updated according to the address modifier, inc */
- pOut += inc;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
-}
-
-/**
- * @} end of Corr group
- */