summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c1494
1 files changed, 0 insertions, 1494 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
deleted file mode 100644
index 0d4486a..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
+++ /dev/null
@@ -1,1494 +0,0 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_conv_partial_fast_q15.c
- * Description: Fast Q15 Partial convolution
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup PartialConv
- * @{
- */
-
-/**
- * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written.
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- *
- * See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
- */
-
-
-arm_status arm_conv_partial_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints)
-{
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0;
- uint32_t j, k, count, check, blkCnt;
- int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
- arm_status status; /* status of Partial convolution */
-
- /* Check for range of output samples to be calculated */
- if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
- {
- /* Set status as ARM_MATH_ARGUMENT_ERROR */
- status = ARM_MATH_ARGUMENT_ERROR;
- }
- else
- {
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if (srcALen >=srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* Conditions to check which loopCounter holds
- * the first and last indices of the output samples to be calculated. */
- check = firstIndex + numPoints;
- blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
- blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
- blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
- blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
- (int32_t) numPoints) : 0;
- blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
- (int32_t) firstIndex);
- blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* Set the output pointer to point to the firstIndex
- * of the output sample to be calculated. */
- pOut = pDst + firstIndex;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed.
- Since the partial convolution starts from firstIndex
- Number of Macs to be performed is firstIndex + 1 */
- count = 1U + firstIndex;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + firstIndex;
- py = pSrc2;
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations less than 4 */
- /* Second part of this stage computes the MAC operations greater than or equal to 4 */
-
- /* The first part of the stage starts here */
- while ((count < 4U) && (blockSize1 > 0))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over number of MAC operations between
- * inputA samples and inputB samples */
- k = count;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum = __SMLAD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = ++pSrc2;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* The second part of the stage starts here */
- /* The internal loop, over count, is unrolled by 4 */
- /* To, read the last two inputB samples using SIMD:
- * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
- py = py - 1;
-
- while (blockSize1 > 0)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
- /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* For the next MAC operations, the pointer py is used without SIMD
- * So, py is incremented by 1 */
- py = py + 1U;
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum = __SMLAD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = ++pSrc2 - 1U;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
- {
- px = pIn1 + firstIndex - srcBLen + 1;
- }
- else
- {
- px = pIn1;
- }
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- py = pSrc2;
-
- /* count is the index by which the pointer pIn1 to be incremented */
- count = 0U;
-
-
- /* --------------------
- * Stage2 process
- * -------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if (srcBLen >= 4U)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = ((uint32_t) blockSize2 >> 2U);
-
- while (blkCnt > 0U)
- {
- py = py - 1U;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
-
- /* read x[0], x[1] samples */
- x0 = *__SIMD32(px);
- /* read x[1], x[2] samples */
- x1 = _SIMD32_OFFSET(px+1);
- px+= 2U;
-
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the last two inputB samples using SIMD:
- * y[srcBLen - 1] and y[srcBLen - 2] */
- c0 = *__SIMD32(py)--;
-
- /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
- acc0 = __SMLADX(x0, c0, acc0);
-
- /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
- acc1 = __SMLADX(x1, c0, acc1);
-
- /* Read x[2], x[3] */
- x2 = *__SIMD32(px);
-
- /* Read x[3], x[4] */
- x3 = _SIMD32_OFFSET(px+1);
-
- /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
- acc2 = __SMLADX(x2, c0, acc2);
-
- /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
- acc3 = __SMLADX(x3, c0, acc3);
-
- /* Read y[srcBLen - 3] and y[srcBLen - 4] */
- c0 = *__SIMD32(py)--;
-
- /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
- acc0 = __SMLADX(x2, c0, acc0);
-
- /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
- acc1 = __SMLADX(x3, c0, acc1);
-
- /* Read x[4], x[5] */
- x0 = _SIMD32_OFFSET(px+2);
-
- /* Read x[5], x[6] */
- x1 = _SIMD32_OFFSET(px+3);
- px += 4U;
-
- /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
- acc2 = __SMLADX(x0, c0, acc2);
-
- /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
- acc3 = __SMLADX(x1, c0, acc3);
-
- } while (--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- if (k == 1U)
- {
- /* Read y[srcBLen - 5] */
- c0 = *(py+1);
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7] */
- x3 = *__SIMD32(px);
- px++;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLADX(x1, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- if (k == 2U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
- px += 2U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
- }
-
- if (k == 3U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
-
- c0 = *(py-1);
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[10] */
- x3 = _SIMD32_OFFSET(px+2);
- px += 3U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x1, c0, acc0);
- acc1 = __SMLAD(x2, c0, acc1);
- acc2 = __SMLADX(x2, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- /* Store the results in the accumulators in the destination buffer. */
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pOut)++ = __PKHBT(acc0 >> 15, acc1 >> 15, 16);
- *__SIMD32(pOut)++ = __PKHBT(acc2 >> 15, acc3 >> 15, 16);
-
-#else
-
- *__SIMD32(pOut)++ = __PKHBT(acc1 >> 15, acc0 >> 15, 16);
- *__SIMD32(pOut)++ = __PKHBT(acc3 >> 15, acc2 >> 15, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4U;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = (uint32_t) blockSize2 % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
- {
- px = pIn1 + firstIndex - srcBLen + 1 + count;
- }
- else
- {
- px = pIn1 + count;
- }
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = (uint32_t) blockSize2;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
- {
- px = pIn1 + firstIndex - srcBLen + 1 + count;
- }
- else
- {
- px = pIn1 + count;
- }
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = srcBLen - 1U;
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- pIn2 = pSrc2 - 1U;
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations greater than 4 */
- /* Second part of this stage computes the MAC operations less than or equal to 4 */
-
- /* The first part of the stage starts here */
- j = count >> 2U;
-
- while ((j > 0U) && (blockSize3 > 0))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
- * with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
- /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
- * with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* For the next MAC operations, the pointer py is used without SIMD
- * So, py is incremented by 1 */
- py = py + 1U;
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
- sum = __SMLAD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
-
- j--;
- }
-
- /* The second part of the stage starts here */
- /* SIMD is not used for the next MAC operations,
- * so pointer py is updated to read only one sample at a time */
- py = py + 1U;
-
- while (blockSize3 > 0)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen-1] * y[srcBLen-1] */
- sum = __SMLAD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-
-#else
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0;
- uint32_t j, k, count, check, blkCnt;
- int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
- arm_status status; /* status of Partial convolution */
- q15_t a, b;
-
- /* Check for range of output samples to be calculated */
- if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
- {
- /* Set status as ARM_MATH_ARGUMENT_ERROR */
- status = ARM_MATH_ARGUMENT_ERROR;
- }
- else
- {
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if (srcALen >=srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* Conditions to check which loopCounter holds
- * the first and last indices of the output samples to be calculated. */
- check = firstIndex + numPoints;
- blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0;
- blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3;
- blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex;
- blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 :
- (int32_t) numPoints) : 0;
- blockSize2 = ((int32_t) check - blockSize3) -
- (blockSize1 + (int32_t) firstIndex);
- blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* Set the output pointer to point to the firstIndex
- * of the output sample to be calculated. */
- pOut = pDst + firstIndex;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed.
- Since the partial convolution starts from firstIndex
- Number of Macs to be performed is firstIndex + 1 */
- count = 1U + firstIndex;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + firstIndex;
- py = pSrc2;
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations less than 4 */
- /* Second part of this stage computes the MAC operations greater than or equal to 4 */
-
- /* The first part of the stage starts here */
- while ((count < 4U) && (blockSize1 > 0))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over number of MAC operations between
- * inputA samples and inputB samples */
- k = count;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = ++pSrc2;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* The second part of the stage starts here */
- /* The internal loop, over count, is unrolled by 4 */
- /* To, read the last two inputB samples using SIMD:
- * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
- py = py - 1;
-
- while (blockSize1 > 0)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- py++;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = ++pSrc2 - 1U;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0)
- {
- px = pIn1 + firstIndex - srcBLen + 1;
- }
- else
- {
- px = pIn1;
- }
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- py = pSrc2;
-
- /* count is the index by which the pointer pIn1 to be incremented */
- count = 0U;
-
-
- /* --------------------
- * Stage2 process
- * -------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if (srcBLen >= 4U)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = ((uint32_t) blockSize2 >> 2U);
-
- while (blkCnt > 0U)
- {
- py = py - 1U;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* read x[0], x[1] samples */
- a = *px++;
- b = *px++;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *px;
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *px;
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the last two inputB samples using SIMD:
- * y[srcBLen - 1] and y[srcBLen - 2] */
- a = *py;
- b = *(py+1);
- py -= 2;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
- acc0 = __SMLADX(x0, c0, acc0);
-
- /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
- acc1 = __SMLADX(x1, c0, acc1);
-
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x2 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x3 = __PKHBT(b, a, 16);
-
-#else
-
- x2 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x3 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
- acc2 = __SMLADX(x2, c0, acc2);
-
- /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
- acc3 = __SMLADX(x3, c0, acc3);
-
- /* Read y[srcBLen - 3] and y[srcBLen - 4] */
- a = *py;
- b = *(py+1);
- py -= 2;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
- acc0 = __SMLADX(x2, c0, acc0);
-
- /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
- acc1 = __SMLADX(x3, c0, acc1);
-
- /* Read x[4], x[5], x[6] */
- a = *(px + 2);
- b = *(px + 3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x0 = __PKHBT(a, b, 16);
- a = *(px + 4);
- x1 = __PKHBT(b, a, 16);
-
-#else
-
- x0 = __PKHBT(b, a, 16);
- a = *(px + 4);
- x1 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 4U;
-
- /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
- acc2 = __SMLADX(x0, c0, acc2);
-
- /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
- acc3 = __SMLADX(x1, c0, acc3);
-
- } while (--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- if (k == 1U)
- {
- /* Read y[srcBLen - 5] */
- c0 = *(py+1);
-
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7] */
- a = *px;
- b = *(px+1);
- px++;
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLAD(x0, c0, acc0);
- acc1 = __SMLAD(x1, c0, acc1);
- acc2 = __SMLADX(x1, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- if (k == 2U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- a = *py;
- b = *(py+1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- px += 2U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
- }
-
- if (k == 3U)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- a = *py;
- b = *(py+1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- c0 = __PKHBT(a, b, 16);
-
-#else
-
- c0 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[7], x[8], x[9] */
- a = *px;
- b = *(px + 1);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
- a = *(px + 2);
- x2 = __PKHBT(b, a, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);
- a = *(px + 2);
- x2 = __PKHBT(a, b, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x0, c0, acc0);
- acc1 = __SMLADX(x1, c0, acc1);
- acc2 = __SMLADX(x3, c0, acc2);
- acc3 = __SMLADX(x2, c0, acc3);
-
- /* Read y[srcBLen - 7] */
- c0 = *(py-1);
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16U;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
-
- /* Read x[10] */
- a = *(px+2);
- b = *(px+3);
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- x3 = __PKHBT(a, b, 16);
-
-#else
-
- x3 = __PKHBT(b, a, 16);;
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- px += 3U;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLADX(x1, c0, acc0);
- acc1 = __SMLAD(x2, c0, acc1);
- acc2 = __SMLADX(x2, c0, acc2);
- acc3 = __SMLADX(x3, c0, acc3);
- }
-
- /* Store the results in the accumulators in the destination buffer. */
- *pOut++ = (q15_t)(acc0 >> 15);
- *pOut++ = (q15_t)(acc1 >> 15);
- *pOut++ = (q15_t)(acc2 >> 15);
- *pOut++ = (q15_t)(acc3 >> 15);
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4U;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = (uint32_t) blockSize2 % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = (uint32_t) blockSize2;
-
- while (blkCnt > 0U)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulate */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = srcBLen - 1U;
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1U);
- pIn2 = pSrc2 - 1U;
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations greater than 4 */
- /* Second part of this stage computes the MAC operations less than or equal to 4 */
-
- /* The first part of the stage starts here */
- j = count >> 2U;
-
- while ((j > 0U) && (blockSize3 > 0))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- py++;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- sum += ((q31_t) * px++ * *py--);
- /* Decrement the loop counter */
- k--;
- }
-
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4U;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
-
- j--;
- }
-
- /* The second part of the stage starts here */
- /* SIMD is not used for the next MAC operations,
- * so pointer py is updated to read only one sample at a time */
- py = py + 1U;
-
- while (blockSize3 > 0)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count;
-
- while (k > 0U)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen-1] * y[srcBLen-1] */
- sum += ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (sum >> 15);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the MAC count */
- count--;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-}
-
-/**
- * @} end of PartialConv group
- */