summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c531
1 files changed, 531 insertions, 0 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
new file mode 100644
index 0000000..26c37f0
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
@@ -0,0 +1,531 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_fast_opt_q15.c
+ * Description: Fast Q15 Convolution
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results
+ * but provides only a single guard bit. There is no saturation on intermediate additions.
+ * Thus, if the accumulator overflows it wraps around and distorts the result.
+ * The input signals should be scaled down to avoid intermediate overflows.
+ * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
+ * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
+ * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
+ *
+ * \par
+ * See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ */
+
+void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q31_t acc0, acc1, acc2, acc3; /* Accumulators */
+ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
+ q31_t y1, y2; /* State variables */
+ q15_t *pOut = pDst; /* output pointer */
+ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
+ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
+ q15_t *pIn1; /* inputA pointer */
+ q15_t *pIn2; /* inputB pointer */
+ q15_t *px; /* Intermediate inputA pointer */
+ q15_t *py; /* Intermediate inputB pointer */
+ uint32_t j, k, blkCnt; /* loop counter */
+ uint32_t tapCnt; /* loop count */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ q15_t a, b;
+
+#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* Pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2 + srcBLen - 1;
+
+ /* points to smaller length sequence */
+ px = pIn2;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+
+ /* Copy smaller length input sequence in reverse order into second scratch buffer */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr2-- = *px++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Assuming scratch1 buffer is aligned by 32-bit */
+ /* Fill (srcBLen - 1U) zeros in scratch1 buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1U);
+
+ /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Copy (srcALen) samples in scratch buffer */
+ arm_copy_q15(pIn1, pScr1, srcALen);
+
+ /* Update pointers */
+ pScr1 += srcALen;
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = *pIn1++;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Fill (srcBLen - 1U) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1U));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1U);
+
+#else
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1U) >> 2U;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1U) % 0x4U;
+
+ while (k > 0U)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = py;
+
+ /* First part of the processing with loop unrolling process 4 data points at a time.
+ ** a second loop below process for the remaining 1 to 3 samples. */
+
+ /* Actual convolution process starts here */
+ blkCnt = (srcALen + srcBLen - 1U) >> 2;
+
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pIn2);
+ y2 = _SIMD32_OFFSET(pIn2 + 2U);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = _SIMD32_OFFSET(pScr1);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x2, y2, acc0);
+ acc2 = __SMLAD(x1, y2, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ x2 = _SIMD32_OFFSET(pScr1 + 2U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+#else
+
+ /* Read four samples from smaller buffer */
+ a = *pIn2;
+ b = *(pIn2 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ y1 = __PKHBT(a, b, 16);
+#else
+ y1 = __PKHBT(b, a, 16);
+#endif
+
+ a = *(pIn2 + 2);
+ b = *(pIn2 + 3);
+#ifndef ARM_MATH_BIG_ENDIAN
+ y2 = __PKHBT(a, b, 16);
+#else
+ y2 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ acc2 = __SMLAD(x2, y1, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ a = *pScr1;
+ b = *(pScr1 + 1);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x1 = __PKHBT(a, b, 16);
+#else
+ x1 = __PKHBT(b, a, 16);
+#endif
+
+ acc0 = __SMLAD(x2, y2, acc0);
+
+ acc2 = __SMLAD(x1, y2, acc2);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ acc1 = __SMLADX(x3, y2, acc1);
+
+ a = *(pScr1 + 2);
+ b = *(pScr1 + 3);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x2 = __PKHBT(a, b, 16);
+#else
+ x2 = __PKHBT(b, a, 16);
+#endif
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y2, acc3);
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* update scratch pointers */
+ pIn2 += 4U;
+ pScr1 += 4U;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3U;
+
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2);
+ acc1 += (*pScr1++ * *pIn2);
+ acc2 += (*pScr1++ * *pIn2);
+ acc3 += (*pScr1++ * *pIn2++);
+
+ pScr1 -= 3U;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+
+ /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+
+ *__SIMD32(pOut)++ =
+ __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 4U;
+
+ }
+
+
+ blkCnt = (srcALen + srcBLen - 1U) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while (blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1U;
+
+ while (tapCnt > 0U)
+ {
+
+ acc0 += (*pScr1++ * *pIn2++);
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1U;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while (tapCnt > 0U)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pIn2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* The result is in 2.30 format. Convert to 1.15 with saturation.
+ ** Then store the output in the destination buffer. */
+ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+ /* Initialization of inputB pointer */
+ pIn2 = py;
+
+ pScratch1 += 1U;
+
+ }
+
+}
+
+/**
+ * @} end of Conv group
+ */