summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c259
1 files changed, 0 insertions, 259 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c b/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
deleted file mode 100644
index d984e2f..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
+++ /dev/null
@@ -1,259 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
-*
-* $Date: 17. January 2013
-* $Revision: V1.4.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_signal_converge_example_f32.c
-*
-* Description: Example code demonstrating convergence of an adaptive
-* filter.
-*
-* Target Processor: Cortex-M4/Cortex-M3
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------- */
-
-/**
- * @ingroup groupExamples
- */
-
-/**
- * @defgroup SignalConvergence Signal Convergence Example
- *
- * \par Description:
- * \par
- * Demonstrates the ability of an adaptive filter to "learn" the transfer function of
- * a FIR lowpass filter using the Normalized LMS Filter, Finite Impulse
- * Response (FIR) Filter, and Basic Math Functions.
- *
- * \par Algorithm:
- * \par
- * The figure below illustrates the signal flow in this example. Uniformly distributed white
- * noise is passed through an FIR lowpass filter. The output of the FIR filter serves as the
- * reference input of the adaptive filter (normalized LMS filter). The white noise is input
- * to the adaptive filter. The adaptive filter learns the transfer function of the FIR filter.
- * The filter outputs two signals: (1) the output of the internal adaptive FIR filter, and
- * (2) the error signal which is the difference between the adaptive filter and the reference
- * output of the FIR filter. Over time as the adaptive filter learns the transfer function
- * of the FIR filter, the first output approaches the reference output of the FIR filter,
- * and the error signal approaches zero.
- * \par
- * The adaptive filter converges properly even if the input signal has a large dynamic
- * range (i.e., varies from small to large values). The coefficients of the adaptive filter
- * are initially zero, and then converge over 1536 samples. The internal function test_signal_converge()
- * implements the stopping condition. The function checks if all of the values of the error signal have a
- * magnitude below a threshold DELTA.
- *
- * \par Block Diagram:
- * \par
- * \image html SignalFlow.gif
- *
- *
- * \par Variables Description:
- * \par
- * \li \c testInput_f32 points to the input data
- * \li \c firStateF32 points to FIR state buffer
- * \li \c lmsStateF32 points to Normalised Least mean square FIR filter state buffer
- * \li \c FIRCoeff_f32 points to coefficient buffer
- * \li \c lmsNormCoeff_f32 points to Normalised Least mean square FIR filter coefficient buffer
- * \li \c wire1, wir2, wire3 temporary buffers
- * \li \c errOutput, err_signal temporary error buffers
- *
- * \par CMSIS DSP Software Library Functions Used:
- * \par
- * - arm_lms_norm_init_f32()
- * - arm_fir_init_f32()
- * - arm_fir_f32()
- * - arm_lms_norm_f32()
- * - arm_scale_f32()
- * - arm_abs_f32()
- * - arm_sub_f32()
- * - arm_min_f32()
- * - arm_copy_f32()
- *
- * <b> Refer </b>
- * \link arm_signal_converge_example_f32.c \endlink
- *
- */
-
-
-/** \example arm_signal_converge_example_f32.c
- */
-
-#include "arm_math.h"
-#include "math_helper.h"
-
-/* ----------------------------------------------------------------------
-** Global defines for the simulation
-* ------------------------------------------------------------------- */
-
-#define TEST_LENGTH_SAMPLES 1536
-#define NUMTAPS 32
-#define BLOCKSIZE 32
-#define DELTA_ERROR 0.000001f
-#define DELTA_COEFF 0.0001f
-#define MU 0.5f
-
-#define NUMFRAMES (TEST_LENGTH_SAMPLES / BLOCKSIZE)
-
-/* ----------------------------------------------------------------------
-* Declare FIR state buffers and structure
-* ------------------------------------------------------------------- */
-
-float32_t firStateF32[NUMTAPS + BLOCKSIZE];
-arm_fir_instance_f32 LPF_instance;
-
-/* ----------------------------------------------------------------------
-* Declare LMSNorm state buffers and structure
-* ------------------------------------------------------------------- */
-
-float32_t lmsStateF32[NUMTAPS + BLOCKSIZE];
-float32_t errOutput[TEST_LENGTH_SAMPLES];
-arm_lms_norm_instance_f32 lmsNorm_instance;
-
-
-/* ----------------------------------------------------------------------
-* Function Declarations for Signal Convergence Example
-* ------------------------------------------------------------------- */
-
-arm_status test_signal_converge_example( void );
-
-
-/* ----------------------------------------------------------------------
-* Internal functions
-* ------------------------------------------------------------------- */
-arm_status test_signal_converge(float32_t* err_signal,
- uint32_t blockSize);
-
-void getinput(float32_t* input,
- uint32_t fr_cnt,
- uint32_t blockSize);
-
-/* ----------------------------------------------------------------------
-* External Declarations for FIR F32 module Test
-* ------------------------------------------------------------------- */
-extern float32_t testInput_f32[TEST_LENGTH_SAMPLES];
-extern float32_t lmsNormCoeff_f32[32];
-extern const float32_t FIRCoeff_f32[32];
-extern arm_lms_norm_instance_f32 lmsNorm_instance;
-
-/* ----------------------------------------------------------------------
-* Declare I/O buffers
-* ------------------------------------------------------------------- */
-
-float32_t wire1[BLOCKSIZE];
-float32_t wire2[BLOCKSIZE];
-float32_t wire3[BLOCKSIZE];
-float32_t err_signal[BLOCKSIZE];
-
-/* ----------------------------------------------------------------------
-* Signal converge test
-* ------------------------------------------------------------------- */
-
-int32_t main(void)
-{
- uint32_t i;
- arm_status status;
- uint32_t index;
- float32_t minValue;
-
- /* Initialize the LMSNorm data structure */
- arm_lms_norm_init_f32(&lmsNorm_instance, NUMTAPS, lmsNormCoeff_f32, lmsStateF32, MU, BLOCKSIZE);
-
- /* Initialize the FIR data structure */
- arm_fir_init_f32(&LPF_instance, NUMTAPS, (float32_t *)FIRCoeff_f32, firStateF32, BLOCKSIZE);
-
- /* ----------------------------------------------------------------------
- * Loop over the frames of data and execute each of the processing
- * functions in the system.
- * ------------------------------------------------------------------- */
-
- for(i=0; i < NUMFRAMES; i++)
- {
- /* Read the input data - uniformly distributed random noise - into wire1 */
- arm_copy_f32(testInput_f32 + (i * BLOCKSIZE), wire1, BLOCKSIZE);
-
- /* Execute the FIR processing function. Input wire1 and output wire2 */
- arm_fir_f32(&LPF_instance, wire1, wire2, BLOCKSIZE);
-
- /* Execute the LMS Norm processing function*/
-
- arm_lms_norm_f32(&lmsNorm_instance, /* LMSNorm instance */
- wire1, /* Input signal */
- wire2, /* Reference Signal */
- wire3, /* Converged Signal */
- err_signal, /* Error Signal, this will become small as the signal converges */
- BLOCKSIZE); /* BlockSize */
-
- /* apply overall gain */
- arm_scale_f32(wire3, 5, wire3, BLOCKSIZE); /* in-place buffer */
- }
-
- status = ARM_MATH_SUCCESS;
-
- /* -------------------------------------------------------------------------------
- * Test whether the error signal has reached towards 0.
- * ----------------------------------------------------------------------------- */
-
- arm_abs_f32(err_signal, err_signal, BLOCKSIZE);
- arm_min_f32(err_signal, BLOCKSIZE, &minValue, &index);
-
- if (minValue > DELTA_ERROR)
- {
- status = ARM_MATH_TEST_FAILURE;
- }
-
- /* ----------------------------------------------------------------------
- * Test whether the filter coefficients have converged.
- * ------------------------------------------------------------------- */
-
- arm_sub_f32((float32_t *)FIRCoeff_f32, lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS);
-
- arm_abs_f32(lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS);
- arm_min_f32(lmsNormCoeff_f32, NUMTAPS, &minValue, &index);
-
- if (minValue > DELTA_COEFF)
- {
- status = ARM_MATH_TEST_FAILURE;
- }
-
- /* ----------------------------------------------------------------------
- * Loop here if the signals did not pass the convergence check.
- * This denotes a test failure
- * ------------------------------------------------------------------- */
-
- if ( status != ARM_MATH_SUCCESS)
- {
- while (1);
- }
-
- while (1); /* main function does not return */
-}
-
- /** \endlink */