summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c204
1 files changed, 0 insertions, 204 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c b/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c
deleted file mode 100644
index 87908ed..0000000
--- a/fw/hid-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_linear_interp_example/arm_linear_interp_example_f32.c
+++ /dev/null
@@ -1,204 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
-*
-* $Date: 17. January 2013
-* $Revision: V1.4.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_linear_interp_example_f32.c
-*
-* Description: Example code demonstrating usage of sin function
-* and uses linear interpolation to get higher precision
-*
-* Target Processor: Cortex-M4/Cortex-M3
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------- */
-
-
-/**
- * @ingroup groupExamples
- */
-
-/**
- * @defgroup LinearInterpExample Linear Interpolate Example
- *
- * <b> CMSIS DSP Software Library -- Linear Interpolate Example </b>
- *
- * <b> Description </b>
- * This example demonstrates usage of linear interpolate modules and fast math modules.
- * Method 1 uses fast math sine function to calculate sine values using cubic interpolation and method 2 uses
- * linear interpolation function and results are compared to reference output.
- * Example shows linear interpolation function can be used to get higher precision compared to fast math sin calculation.
- *
- * \par Block Diagram:
- * \par
- * \image html linearInterpExampleMethod1.gif "Method 1: Sine caluclation using fast math"
- * \par
- * \image html linearInterpExampleMethod2.gif "Method 2: Sine caluclation using interpolation function"
- *
- * \par Variables Description:
- * \par
- * \li \c testInputSin_f32 points to the input values for sine calculation
- * \li \c testRefSinOutput32_f32 points to the reference values caculated from sin() matlab function
- * \li \c testOutput points to output buffer calculation from cubic interpolation
- * \li \c testLinIntOutput points to output buffer calculation from linear interpolation
- * \li \c snr1 Signal to noise ratio for reference and cubic interpolation output
- * \li \c snr2 Signal to noise ratio for reference and linear interpolation output
- *
- * \par CMSIS DSP Software Library Functions Used:
- * \par
- * - arm_sin_f32()
- * - arm_linear_interp_f32()
- *
- * <b> Refer </b>
- * \link arm_linear_interp_example_f32.c \endlink
- *
- */
-
-
-/** \example arm_linear_interp_example_f32.c
- */
-
-#include "arm_math.h"
-#include "math_helper.h"
-
-#define SNR_THRESHOLD 90
-#define TEST_LENGTH_SAMPLES 10
-#define XSPACING (0.00005f)
-
-/* ----------------------------------------------------------------------
-* Test input data for F32 SIN function
-* Generated by the MATLAB rand() function
-* randn('state', 0)
-* xi = (((1/4.18318581819710)* randn(blockSize, 1) * 2* pi));
-* --------------------------------------------------------------------*/
-float32_t testInputSin_f32[TEST_LENGTH_SAMPLES] =
-{
- -0.649716504673081170, -2.501723745497831200,
- 0.188250329003310100, 0.432092748487532540,
- -1.722010988459680800, 1.788766476323060600,
- 1.786136060975809500, -0.056525543169408797,
- 0.491596272728153760, 0.262309671126153390
-};
-
-/*------------------------------------------------------------------------------
-* Reference out of SIN F32 function for Block Size = 10
-* Calculated from sin(testInputSin_f32)
-*------------------------------------------------------------------------------*/
-float32_t testRefSinOutput32_f32[TEST_LENGTH_SAMPLES] =
-{
- -0.604960695383043530, -0.597090287967934840,
- 0.187140422442966500, 0.418772124875992690,
- -0.988588831792106880, 0.976338412038794010,
- 0.976903856413481100, -0.056495446835214236,
- 0.472033731854734240, 0.259311907228582830
-};
-
-/*------------------------------------------------------------------------------
-* Method 1: Test out Buffer Calculated from Cubic Interpolation
-*------------------------------------------------------------------------------*/
-float32_t testOutput[TEST_LENGTH_SAMPLES];
-
-/*------------------------------------------------------------------------------
-* Method 2: Test out buffer Calculated from Linear Interpolation
-*------------------------------------------------------------------------------*/
-float32_t testLinIntOutput[TEST_LENGTH_SAMPLES];
-
-/*------------------------------------------------------------------------------
-* External table used for linear interpolation
-*------------------------------------------------------------------------------*/
-extern float arm_linear_interep_table[188495];
-
-/* ----------------------------------------------------------------------
-* Global Variables for caluclating SNR's for Method1 & Method 2
-* ------------------------------------------------------------------- */
-float32_t snr1;
-float32_t snr2;
-
-/* ----------------------------------------------------------------------------
-* Calculation of Sine values from Cubic Interpolation and Linear interpolation
-* ---------------------------------------------------------------------------- */
-int32_t main(void)
-{
- uint32_t i;
- arm_status status;
-
- arm_linear_interp_instance_f32 S = {188495, -3.141592653589793238, XSPACING, &arm_linear_interep_table[0]};
-
- /*------------------------------------------------------------------------------
- * Method 1: Test out Calculated from Cubic Interpolation
- *------------------------------------------------------------------------------*/
- for(i=0; i< TEST_LENGTH_SAMPLES; i++)
- {
- testOutput[i] = arm_sin_f32(testInputSin_f32[i]);
- }
-
- /*------------------------------------------------------------------------------
- * Method 2: Test out Calculated from Cubic Interpolation and Linear interpolation
- *------------------------------------------------------------------------------*/
-
- for(i=0; i< TEST_LENGTH_SAMPLES; i++)
- {
- testLinIntOutput[i] = arm_linear_interp_f32(&S, testInputSin_f32[i]);
- }
-
- /*------------------------------------------------------------------------------
- * SNR calculation for method 1
- *------------------------------------------------------------------------------*/
- snr1 = arm_snr_f32(testRefSinOutput32_f32, testOutput, 2);
-
- /*------------------------------------------------------------------------------
- * SNR calculation for method 2
- *------------------------------------------------------------------------------*/
- snr2 = arm_snr_f32(testRefSinOutput32_f32, testLinIntOutput, 2);
-
- /*------------------------------------------------------------------------------
- * Initialise status depending on SNR calculations
- *------------------------------------------------------------------------------*/
- if ( snr2 > snr1)
- {
- status = ARM_MATH_SUCCESS;
- }
- else
- {
- status = ARM_MATH_TEST_FAILURE;
- }
-
- /* ----------------------------------------------------------------------
- ** Loop here if the signals fail the PASS check.
- ** This denotes a test failure
- ** ------------------------------------------------------------------- */
- if ( status != ARM_MATH_SUCCESS)
- {
- while (1);
- }
-
- while (1); /* main function does not return */
-}
-
- /** \endlink */