summaryrefslogtreecommitdiff
path: root/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions
diff options
context:
space:
mode:
Diffstat (limited to 'fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions')
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/biquad.c713
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/conv.c350
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/correlate.c513
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir.c325
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_decimate.c386
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_interpolate.c291
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_lattice.c241
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_sparse.c485
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/iir_lattice.c271
-rw-r--r--fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c695
10 files changed, 4270 insertions, 0 deletions
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/biquad.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/biquad.c
new file mode 100644
index 0000000..1fe7c54
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/biquad.c
@@ -0,0 +1,713 @@
+#include "ref.h"
+
+void ref_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc; /* accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn; /* temporary input */
+ float32_t d1, d2; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc = (b0 * Xn) + d1;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1 = (b1 * Xn + a1 * acc) + d2;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2 = (b2 * Xn) + (a2 * acc);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+}
+
+
+void ref_biquad_cascade_stereo_df2T_f32(
+ const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc1a, acc1b; /* accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn1a, Xn1b; /* temporary input */
+ float32_t d1a, d2a, d1b, d2b; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1a = pState[0];
+ d2a = pState[1];
+ d1b = pState[2];
+ d2b = pState[3];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn1a = *pIn++; //Channel a
+ Xn1b = *pIn++; //Channel b
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc1a = (b0 * Xn1a) + d1a;
+ acc1b = (b0 * Xn1b) + d1b;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc1a;
+ *pOut++ = acc1b;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
+ d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2a = (b2 * Xn1a) + (a2 * acc1a);
+ d2b = (b2 * Xn1b) + (a2 * acc1b);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1a;
+ *pState++ = d2a;
+ *pState++ = d1b;
+ *pState++ = d2b;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+
+}
+
+void ref_biquad_cascade_df2T_f64(
+ const arm_biquad_cascade_df2T_instance_f64 * S,
+ float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize)
+{
+ float64_t *pIn = pSrc; /* source pointer */
+ float64_t *pOut = pDst; /* destination pointer */
+ float64_t *pState = S->pState; /* State pointer */
+ float64_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float64_t acc; /* accumulator */
+ float64_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float64_t Xn; /* temporary input */
+ float64_t d1, d2; /* state variables */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /*Reading the state values */
+ d1 = pState[0];
+ d2 = pState[1];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* y[n] = b0 * x[n] + d1 */
+ acc = (b0 * Xn) + d1;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc;
+
+ /* Every time after the output is computed state should be updated. */
+ /* d1 = b1 * x[n] + a1 * y[n] + d2 */
+ d1 = (b1 * Xn + a1 * acc) + d2;
+
+ /* d2 = b2 * x[n] + a2 * y[n] */
+ d2 = (b2 * Xn) + (a2 * acc);
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the state array */
+ *pState++ = d1;
+ *pState++ = d2;
+
+ /* The current stage input is given as the output to the next stage */
+ pIn = pDst;
+
+ /*Reset the output working pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+}
+
+void ref_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pIn = pSrc; /* source pointer */
+ float32_t *pOut = pDst; /* destination pointer */
+ float32_t *pState = S->pState; /* pState pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
+ float32_t acc; /* Simulates the accumulator */
+ float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
+ float32_t Xn; /* temporary input */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the pState values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent numStages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset the output pointer */
+ pOut = pDst;
+
+ /* decrement the loop counter */
+ stage--;
+
+ } while (stage > 0U);
+}
+
+void ref_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q63_t *pState = S->pState; /* state pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q63_t acc; /* accumulator */
+ q31_t Xn1, Xn2; /* Input Filter state variables */
+ q63_t Yn1, Yn2; /* Output Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn; /* temporary input */
+ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+ q31_t acc_l, acc_h; /* temporary output */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (q63_t)Xn*b0 + (q63_t)Xn1*b1 + (q63_t)Xn2*b2;
+ /* acc += a1 * y[n-1] */
+ acc += mult32x64(Yn1, a1);
+ /* acc += a2 * y[n-2] */
+ acc += mult32x64(Yn2, a2);
+
+ /* Every time after the output is computed state should be updated. */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+
+ /* The result is converted to 1.63, Yn1 variable is reused */
+ Yn1 = acc << shift;
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Store the output in the destination buffer in 1.31 format. */
+ *pOut++ = acc_h;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage output is given as input to the second stage. */
+ pIn = pDst;
+
+ /* Reset to destination buffer working pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = (q63_t) Xn1;
+ *pState++ = (q63_t) Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
+
+void ref_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q63_t acc; /* accumulator */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q31_t *pState = S->pState; /* pState pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t Xn; /* temporary input */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ /* The variables acc holds the output value that is computed:
+ * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
+ */
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ /* acc = b0 * x[n] */
+ acc = (q63_t) b0 *Xn;
+
+ /* acc += b1 * x[n-1] */
+ acc += (q63_t) b1 *Xn1;
+ /* acc += b[2] * x[n-2] */
+ acc += (q63_t) b2 *Xn2;
+ /* acc += a1 * y[n-1] */
+ acc += (q63_t) a1 *Yn1;
+ /* acc += a2 * y[n-2] */
+ acc += (q63_t) a2 *Yn2;
+
+ /* The result is converted to 1.31 */
+ acc = acc >> lShift;
+
+ /* Every time after the output is computed state should be updated. */
+ /* The states should be updated as: */
+ /* Xn2 = Xn1 */
+ /* Xn1 = Xn */
+ /* Yn2 = Yn1 */
+ /* Yn1 = acc */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q31_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q31_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
+
+
+void ref_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t acc = 0; /* accumulator */
+ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q31_t *pIn = pSrc; /* input pointer initialization */
+ q31_t *pOut = pDst; /* output pointer initialization */
+ q31_t *pState = S->pState; /* pState pointer initialization */
+ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
+ q31_t Xn; /* temporary input */
+ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
+ uint32_t sample, stage = S->numStages; /* loop counters */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ mult_32x32_keep32_R(acc, b0, Xn);
+ multAcc_32x32_keep32_R(acc, b1, Xn1);
+ multAcc_32x32_keep32_R(acc, b2, Xn2);
+ multAcc_32x32_keep32_R(acc, a1, Yn1);
+ multAcc_32x32_keep32_R(acc, a2, Yn2);
+
+ /* The result is converted to 1.31 */
+ acc <<= shift;
+
+ /* Every time after the output is computed state should be updated. */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
+
+void ref_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q15_t Xn; /* temporary input */
+ q31_t acc; /* Accumulator */
+ int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ pCoeffs++; // skip the 0 coefficient
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (q31_t)b0*Xn + (q31_t)b1*Xn1 + (q31_t)b2*Xn2 + (q31_t)a1*Yn1 + (q31_t)a2*Yn2;
+
+ /* The result is converted to 1.15 */
+ acc = ref_sat_q15(acc >> shift);
+
+ /* Every time after the output is computed state should be updated. */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q15_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
+
+void ref_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pIn = pSrc; /* Source pointer */
+ q15_t *pOut = pDst; /* Destination pointer */
+ q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
+ q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
+ q15_t Xn; /* temporary input */
+ q63_t acc; /* Accumulator */
+ int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
+
+ do
+ {
+ /* Reading the coefficients */
+ b0 = *pCoeffs++;
+ pCoeffs++; // skip the 0 coefficient
+ b1 = *pCoeffs++;
+ b2 = *pCoeffs++;
+ a1 = *pCoeffs++;
+ a2 = *pCoeffs++;
+
+ /* Reading the state values */
+ Xn1 = pState[0];
+ Xn2 = pState[1];
+ Yn1 = pState[2];
+ Yn2 = pState[3];
+
+ sample = blockSize;
+
+ while (sample > 0U)
+ {
+ /* Read the input */
+ Xn = *pIn++;
+
+ /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
+ acc = (q31_t)b0*Xn + (q31_t)b1*Xn1 + (q31_t)b2*Xn2 + (q31_t)a1*Yn1 + (q31_t)a2*Yn2;
+
+ /* The result is converted to 1.15 */
+ acc = ref_sat_q15(acc >> shift);
+
+ /* Every time after the output is computed state should be updated. */
+ Xn2 = Xn1;
+ Xn1 = Xn;
+ Yn2 = Yn1;
+ Yn1 = (q15_t) acc;
+
+ /* Store the output in the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* decrement the loop counter */
+ sample--;
+ }
+
+ /* The first stage goes from the input buffer to the output buffer. */
+ /* Subsequent stages occur in-place in the output buffer */
+ pIn = pDst;
+
+ /* Reset to destination pointer */
+ pOut = pDst;
+
+ /* Store the updated state variables back into the pState array */
+ *pState++ = Xn1;
+ *pState++ = Xn2;
+ *pState++ = Yn1;
+ *pState++ = Yn2;
+
+ } while (--stage);
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/conv.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/conv.c
new file mode 100644
index 0000000..dc1b103
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/conv.c
@@ -0,0 +1,350 @@
+#include "ref.h"
+
+void ref_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst)
+{
+ float32_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry out MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pSrcB[i - j] * pSrcA[j];
+ }
+ }
+ /* Store the output in the destination buffer */
+ pDst[i] = sum;
+ }
+}
+
+arm_status ref_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_f32(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
+
+void ref_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q63_t) pSrcA[j] * (pSrcB[i - j]);
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q31_t)(sum >> 31U);
+ }
+}
+
+void ref_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum = (q31_t) ((((q63_t)sum << 32) +
+ ((q63_t)pSrcA[j] * pSrcB[i - j])) >> 32);
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q31_t)(sum << 1U);
+ }
+}
+
+arm_status ref_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_q31(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
+
+arm_status ref_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_fast_q31(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
+
+void ref_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+ q63_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t)pSrcA[j] * pSrcB[i - j];
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = ref_sat_q15(sum >> 15U);
+ }
+}
+
+arm_status ref_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t)pSrcA[j] * pSrcB[i - j];
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = ref_sat_q15(sum >> 15U);
+ }
+
+ return ARM_MATH_SUCCESS;
+}
+
+void ref_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t)pSrcA[j] * pSrcB[i - j];
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = sum >> 15U;
+ }
+}
+
+void ref_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q31_t)pSrcA[j] * pSrcB[i - j];
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = ref_sat_q15(sum >> 15U);
+ }
+}
+
+arm_status ref_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_q15(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
+
+arm_status ref_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_fast_q15(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
+
+
+void ref_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst)
+{
+ q31_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counter */
+
+ /* Loop to calculate output of convolution for output length number of times */
+ for (i = 0; i < srcALen + srcBLen - 1; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += (q15_t)pSrcA[j] * pSrcB[i - j];
+ }
+ }
+
+ /* Store the output in the destination buffer */
+ pDst[i] = (q7_t)ref_sat_q7(sum >> 7);
+ }
+}
+
+arm_status ref_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints)
+{
+ ref_conv_q7(pSrcA,srcALen,pSrcB,srcBLen,pDst);
+
+ return ARM_MATH_SUCCESS;
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/correlate.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/correlate.c
new file mode 100644
index 0000000..ff1d95b
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/correlate.c
@@ -0,0 +1,513 @@
+#include "ref.h"
+
+void ref_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst)
+{
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ float32_t sum; /* Accumulator */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* The algorithm implementation is based on the lengths of the inputs.
+ * srcB is always made to slide across srcA.
+ * So srcBLen is always considered as shorter or equal to srcALen
+ * But CORR(x, y) is reverse of CORR(y, x)
+ * So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer
+ * and a variable, inv is set to 1
+ * If lengths are not equal then zero pad has to be done to make the two
+ * inputs of same length. But to improve the performance, we include zeroes
+ * in the output instead of zero padding either of the the inputs
+ * If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * starting of the output buffer
+ * If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
+ * ending of the output buffer
+ * Once the zero padding is done the remaining of the output is calcualted
+ * using convolution but with the shorter signal time shifted.
+ */
+
+ /* Calculate the length of the remaining sequence */
+ tot = srcALen + srcBLen - 2U;
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ /* Initialise the pointer after zero padding */
+ pDst += srcALen - srcBLen;
+ }
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + srcALen - 1U;
+
+ /* Initialisation of the pointer after zero padding */
+ pDst += tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((i - j < srcBLen) && (j < srcALen))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pIn1[j] * pIn2[-((int32_t)i - j)];
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = sum;
+ else
+ *pDst++ = sum;
+ }
+}
+
+void ref_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q31_t *pIn1 = pSrcA; /* inputA pointer */
+ q31_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate correlation for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to correlation equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q31_t)(sum >> 31U);
+ else
+ *pDst++ = (q31_t)(sum >> 31U);
+ }
+}
+
+void ref_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst)
+{
+ q31_t *pIn1 = pSrcA; /* inputA pointer */
+ q31_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate correlation for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to correlation equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum = (q31_t) ((((q63_t) sum << 32) +
+ ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)])) >> 32);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q31_t)(sum << 1U);
+ else
+ *pDst++ = (q31_t)(sum << 1U);
+ }
+}
+
+void ref_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+ q15_t *pIn1 = pSrcA; /* inputA pointer */
+ q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q15_t) ref_sat_q15(sum >> 15U);
+ else
+ *pDst++ = (q15_t) ref_sat_q15(sum >> 15U);
+ }
+}
+
+void ref_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst)
+{
+ q15_t *pIn1 = pSrcA; /* inputA pointer */
+ q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q63_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q15_t)(sum >> 15U);
+ else
+ *pDst++ = (q15_t)(sum >> 15U);
+ }
+}
+
+void ref_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch)
+{
+ q15_t *pIn1 = pSrcA; /* inputA pointer */
+ q15_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q31_t sum; /* Accumulators */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q15_t) ref_sat_q15(sum >> 15U);
+ else
+ *pDst++ = (q15_t) ref_sat_q15(sum >> 15U);
+ }
+}
+
+void ref_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst)
+{
+ q7_t *pIn1 = pSrcA; /* inputA pointer */
+ q7_t *pIn2 = pSrcB + (srcBLen - 1U); /* inputB pointer */
+ q31_t sum; /* Accumulator */
+ uint32_t i = 0U, j; /* loop counters */
+ uint32_t inv = 0U; /* Reverse order flag */
+ uint32_t tot = 0U; /* Length */
+
+ /* Calculate the length of the remaining sequence */
+ tot = ((srcALen + srcBLen) - 2U);
+
+ if (srcALen > srcBLen)
+ {
+ /* Calculating the number of zeros to be padded to the output */
+ j = srcALen - srcBLen;
+
+ /* Initialise the pointer after zero padding */
+ pDst += j;
+ }
+
+ else if (srcALen < srcBLen)
+ {
+ /* Initialization to inputB pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization to the end of inputA pointer */
+ pIn2 = pSrcA + (srcALen - 1U);
+
+ /* Initialisation of the pointer after zero padding */
+ pDst = pDst + tot;
+
+ /* Swapping the lengths */
+ j = srcALen;
+ srcALen = srcBLen;
+ srcBLen = j;
+
+ /* Setting the reverse flag */
+ inv = 1;
+
+ }
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i <= tot; i++)
+ {
+ /* Initialize sum with zero to carry on MAC operations */
+ sum = 0;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += ((q15_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
+ }
+ }
+ /* Store the output in the destination buffer */
+ if (inv == 1)
+ *pDst-- = (q7_t) __SSAT((sum >> 7U), 8U);
+ else
+ *pDst++ = (q7_t) __SSAT((sum >> 7U), 8U);
+ }
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir.c
new file mode 100644
index 0000000..3e72b87
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir.c
@@ -0,0 +1,325 @@
+#include "ref.h"
+
+void ref_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ float32_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc += pState[i] * pCoeffs[i];
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps-1;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
+
+void ref_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ q63_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc += (q63_t)pState[i] * pCoeffs[i];
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = (q31_t)(acc >> 31);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps-1;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
+
+void ref_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ q31_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc = (q31_t) (((((q63_t) acc) << 32) + ((q63_t) pState[i] * pCoeffs[i]) + 0x80000000LL ) >> 32);
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = (q31_t)(acc << 1);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps-1;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
+
+void ref_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ q63_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc += (q31_t)pState[i] * pCoeffs[i];
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = ref_sat_q15(acc >> 15);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
+
+void ref_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ q31_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc += (q31_t)pState[i] * pCoeffs[i];
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = ref_sat_q15(acc >> 15);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps-1;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
+
+void ref_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize)
+{
+ q7_t *pState = S->pState; /* State pointer */
+ q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q7_t *pStateCurnt; /* Points to the current sample of the state */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i; /* Loop counters */
+ q31_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ while (blockSize > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulates */
+ acc += (q31_t)pState[i] * pCoeffs[i];
+ }
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = ref_sat_q7(acc >> 7);
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ blockSize--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy data */
+ for(i=0;i<numTaps-1;i++)
+ {
+ pStateCurnt[i] = pState[i];
+ }
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_decimate.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_decimate.c
new file mode 100644
index 0000000..7cbf127
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_decimate.c
@@ -0,0 +1,386 @@
+#include "ref.h"
+
+void ref_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t sum0; /* Accumulator */
+ float32_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + numTaps - 1U;
+
+ /* Total number of output samples to be computed */
+ blkCnt = blockSize / S->M;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Read coefficients */
+ c0 = pCoeffs[i];
+
+ /* Fetch 1 state variable */
+ x0 = pState[i];
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState += S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum0;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+void ref_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + numTaps - 1U;
+
+ /* Total number of output samples to be computed */
+ blkCnt = blockSize / S->M;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Read coefficients */
+ c0 = pCoeffs[i];
+
+ /* Fetch 1 state variable */
+ x0 = pState[i];
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t)x0 * c0;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 >> 31);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+void ref_fir_decimate_fast_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + numTaps - 1U;
+
+ /* Total number of output samples to be computed */
+ blkCnt = blockSize / S->M;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Read coefficients */
+ c0 = pCoeffs[i];
+
+ /* Fetch 1 state variable */
+ x0 = pState[i];
+
+ /* Perform the multiply-accumulate */
+ sum0 = (q31_t)((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32);
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 << 1);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+void ref_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + numTaps - 1U;
+
+ /* Total number of output samples to be computed */
+ blkCnt = blockSize / S->M;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Read coefficients */
+ c0 = pCoeffs[i];
+
+ /* Fetch 1 state variable */
+ x0 = pState[i];
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q31_t)x0 * c0;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = ref_sat_q15(sum0 >> 15);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+void ref_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt; /* Loop counters */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + numTaps - 1U;
+
+ /* Total number of output samples to be computed */
+ blkCnt = blockSize / S->M;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Read coefficients */
+ c0 = pCoeffs[i];
+
+ /* Fetch 1 state variable */
+ x0 = pState[i];
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = ref_sat_q15(sum0 >> 15);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_interpolate.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_interpolate.c
new file mode 100644
index 0000000..8abb089
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_interpolate.c
@@ -0,0 +1,291 @@
+#include "ref.h"
+
+void ref_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ float32_t sum; /* Accumulator */
+ uint32_t i, blkCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + phaseLen - 1;
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0.0f;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + i - 1;
+
+ /* Loop over the polyPhase length */
+ tapCnt = phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *ptr1++ * *ptr2;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = sum;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = phaseLen - 1U;
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+void ref_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+
+ /* Run the below code for Cortex-M0 */
+
+ q63_t sum; /* Accumulator */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (q31_t)phaseLen - 1;
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + i - 1;
+
+ tapCnt = phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *ptr1++;
+
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t)(sum >> 31);
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = phaseLen - 1U;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+void ref_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ q63_t sum; /* Accumulator */
+ q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, tapCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + phaseLen - 1;
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while (blkCnt > 0U)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while (i > 0U)
+ {
+ /* Set accumulator to zero */
+ sum = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + i - 1;
+
+ /* Loop over the polyPhase length */
+ tapCnt = (uint32_t)phaseLen;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the coefficient */
+ c0 = *ptr2;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *ptr1++;
+
+ /* Perform the multiply-accumulate */
+ sum += (q31_t) x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Store the result after converting to 1.15 format in the destination buffer */
+ *pDst++ = ref_sat_q15(sum >> 15);
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (uint32_t) phaseLen - 1U;
+
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_lattice.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_lattice.c
new file mode 100644
index 0000000..6466106
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_lattice.c
@@ -0,0 +1,241 @@
+#include "ref.h"
+
+void ref_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *px; /* temporary state pointer */
+ float32_t *pk; /* temporary coefficient pointer */
+ float32_t fcurr, fnext, gcurr, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = pCoeffs;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurr = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = fcurr + ((*pk) * gcurr);
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = (fcurr * (*pk++)) + gcurr;
+
+ /* save f0(n) in state buffer */
+ *px++ = fcurr;
+
+ /* f1(n) is saved in fcurr
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurr = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = fcurr + ((*pk) * gcurr);
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = (fcurr * (*pk++)) + gcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt--;
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr;
+
+ blkCnt--;
+ }
+}
+
+void ref_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *px; /* temporary state pointer */
+ q31_t *pk; /* temporary coefficient pointer */
+ q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = pCoeffs;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurr = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
+ /* save g1(n) in state buffer */
+ *px++ = fcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g2(n) from state buffer */
+ gcurr = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
+
+ /* f1(n) is saved in fcurr1
+ for next stage processing */
+ fcurr = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = fcurr;
+
+ blkCnt--;
+
+ }
+}
+
+void ref_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* temporary state pointer */
+ q15_t *pk; /* temporary coefficient pointer */
+ q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* f0(n) = x(n) */
+ fcurnt = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
+ fnext = ref_sat_q15(fnext);
+
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
+ gnext = ref_sat_q15(gnext);
+
+ /* save f0(n) in state buffer */
+ *px++ = (q15_t) fcurnt;
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt = (numStages - 1U);
+
+ /* stage loop */
+ while (stageCnt > 0U)
+ {
+ /* read g1(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* save g0(n-1) in state buffer */
+ *px++ = (q15_t) gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15U) + fcurnt;
+ fnext = ref_sat_q15(fnext);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15U) + gcurnt;
+ gnext = ref_sat_q15(gnext);
+
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = ref_sat_q15(fcurnt);
+
+
+ blkCnt--;
+
+ }
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_sparse.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_sparse.c
new file mode 100644
index 0000000..0638313
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/fir_sparse.c
@@ -0,0 +1,485 @@
+#include "ref.h"
+
+void ref_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *px; /* Scratch buffer pointer */
+ float32_t *py = pState; /* Temporary pointers for state buffer */
+ float32_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ float32_t *pOut; /* Destination pointer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ float32_t coeff = *pCoeffs++; /* Read the first coefficient value */
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
+ (int32_t *) pSrc, 1, blockSize);
+
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in destination buffer */
+ *pOut++ = *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 1U;
+
+ while (tapCnt > 0U)
+ {
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer */
+ px = pb;
+
+ /* Working pointer for destination buffer */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pOut++ += *px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *px; /* Scratch buffer pointer */
+ q31_t *py = pState; /* Temporary pointers for state buffer */
+ q31_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q31_t *pOut; /* Destination pointer */
+ q63_t out; /* Temporary output variable */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q31_t coeff = *pCoeffs++; /* Read the first coefficient value */
+ q31_t in;
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
+ (int32_t *) pSrc, 1, blockSize);
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiplications and store in the destination buffer */
+ *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 1U;
+
+ while (tapCnt > 0U)
+ {
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
+ (int32_t *) pb, (int32_t *) pb, blockSize, 1,
+ blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pOut = pDst;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ out = *pOut;
+ out += ((q63_t) * px++ * coeff) >> 32;
+ *pOut++ = (q31_t) (out);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Working output pointer is updated */
+ pOut = pDst;
+
+ /* Output is converted into 1.31 format. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ in = *pOut << 1;
+ *pOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+}
+
+void ref_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pIn = pSrc; /* Working pointer for input */
+ q15_t *pOut = pDst; /* Working pointer for output */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* Temporary pointers for scratch buffer */
+ q15_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q15_t *py = pState; /* Temporary pointers for state buffer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q15_t coeff = *pCoeffs++; /* Read the first coefficient value */
+ q31_t *pScr2 = pScratchOut; /* Working pointer for pScratchOut */
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 1U;
+
+ while (tapCnt > 0U)
+ {
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
+ blkCnt--;
+ }
+}
+
+void ref_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t *pSrc,
+ q7_t *pDst,
+ q7_t *pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize)
+{
+ q7_t *pState = S->pState; /* State pointer */
+ q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q7_t *px; /* Scratch buffer pointer */
+ q7_t *py = pState; /* Temporary pointers for state buffer */
+ q7_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q7_t *pOut = pDst; /* Destination pointer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q7_t coeff = *pCoeffs++; /* Read the coefficient value */
+ q31_t *pScr2 = pScratchOut; /* Working pointer for scratch buffer of output values */
+ q31_t in;
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
+ blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 1U;
+
+ while (tapCnt > 0U)
+ {
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if (readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
+ (int32_t) blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Perform Multiply-Accumulate */
+ in = *pScratchOut + ((q31_t) * px++ * coeff);
+ *pScratchOut++ = in;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/iir_lattice.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/iir_lattice.c
new file mode 100644
index 0000000..ab37d5f
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/iir_lattice.c
@@ -0,0 +1,271 @@
+#include "ref.h"
+
+void ref_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t fcurr, fnext = 0, gcurr, gnext; /* Temporary variables for lattice stages */
+ float32_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* temporary variables for counts */
+ float32_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ float32_t *pState; /* State pointer */
+ float32_t *pStateCurnt; /* State current pointer */
+
+ blkCnt = blockSize;
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0.0f;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ /* Process sample for numStages */
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample for last taps */
+ fnext = fcurr - (*pk) * gcurr;
+ gnext = fnext * (*pk++) + gcurr;
+
+ /* Output samples for last taps */
+ acc += gnext * (*pv++);
+ *px2++ = gnext;
+ fcurr = fnext;
+
+ /* Decrementing loop counter */
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += fnext * (*pv);
+
+ *px2++ = fnext;
+
+ /* write out into pDst */
+ *pDst++ = acc;
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q31_t *px1, *px2, *pk, *pv; /* Temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q31_t *pState; /* State pointer */
+ q31_t *pStateCurnt; /* State current pointer */
+
+ blkCnt = blockSize;
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample */
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext =
+ ref_sat_q31(((q63_t) fcurr -
+ ((q31_t) (((q63_t) gcurr * (*pk)) >> 31))));
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext =
+ ref_sat_q31(((q63_t) gcurr +
+ ((q31_t) (((q63_t) fnext * (*pk++)) >> 31))));
+ /* Output samples */
+ /* y(n) += gN(n) * vN */
+ acc += ((q63_t) gnext * *pv++);
+ /* write gN-1(n-1) into state for next sample processing */
+ *px2++ = gnext;
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q63_t) fnext *(*pv++);
+
+ *px2++ = fnext;
+
+ /* write out into pDst */
+ *pDst++ = (q31_t) (acc >> 31U);
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ tapCnt = numStages;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ uint32_t stgCnt; /* Temporary variables for counts */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q15_t *pState; /* State pointer */
+ q15_t *pStateCurnt; /* State current pointer */
+ q15_t out; /* Temporary variable for output */
+
+ blkCnt = blockSize;
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while (blkCnt > 0U)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ tapCnt = numStages;
+
+ while (tapCnt > 0U)
+ {
+ gcurr = *px1++;
+ /* Process sample */
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = fcurr - ((gcurr * (*pk)) >> 15);
+ fnext = ref_sat_q15(fnext);
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = ((fnext * (*pk++)) >> 15) + gcurr;
+ gnext = ref_sat_q15(gnext);
+ /* Output samples */
+ /* y(n) += gN(n) * vN */
+ acc += (q31_t) ((gnext * (*pv++)));
+ /* write gN(n) into state for next sample processing */
+ *px2++ = (q15_t) gnext;
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q31_t) ((fnext * (*pv++)));
+
+ out = ref_sat_q15(acc >> 15);
+ *px2++ = (q15_t) fnext;
+
+ /* write out into pDst */
+ *pDst++ = out;
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1U;
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ stgCnt = numStages;
+
+ /* copy data */
+ while (stgCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ stgCnt--;
+ }
+}
diff --git a/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c
new file mode 100644
index 0000000..fee99f9
--- /dev/null
+++ b/fw/hid-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c
@@ -0,0 +1,695 @@
+#include "ref.h"
+
+void ref_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w = 0.0f; /* weight factor */
+
+ e = 0.0f;
+ d = 0.0f;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[numTaps - 1U]);
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ sum += pState[i] * pCoeffs[i];
+ }
+
+ /* The result is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Weighting factor for the LMS version */
+ w = e * mu;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ pCoeffs[i] += w * pState[i];
+ }
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ * start of the state buffer. This prepares the state buffer for the
+ * next function call. */
+ for(i=0;i<numTaps-1;i++)
+ {
+ S->pState[i] = pState[i];
+ }
+}
+
+void ref_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+ float32_t energy; /* Energy of the input */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */
+
+ /* Initializations of error, difference, Coefficient update */
+ e = 0.0f;
+ d = 0.0f;
+ w = 0.0f;
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[numTaps - 1U]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= x0 * x0;
+ energy += in * in;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ sum += pState[i] * pCoeffs[i];
+ }
+
+ /* The result in the accumulator is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for updating filter coefficients */
+ /* epsilon value 0.000000119209289f */
+ w = e * mu / (energy + 0.000000119209289f);
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulate */
+ pCoeffs[i] += w * pState[i];
+ }
+
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+ }
+
+ S->energy = energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ * start of the state buffer. This prepares the state buffer for the
+ * next function call. */
+ for(i=0;i<numTaps-1;i++)
+ {
+ S->pState[i] = pState[i];
+ }
+}
+
+void ref_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t mu = S->mu; /* Adaptive factor */
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0; /* error of data sample */
+ q31_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = (uint32_t)S->postShift + 1;
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t)(*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Store the result from accumulator into the destination buffer. */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ *pOut++ = (q31_t)acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q31_t)acc;
+
+ *pErr++ = (q31_t)e;
+
+ /* Weighting factor for the LMS version */
+ alpha = (q31_t)(((q63_t)e * mu) >> 31);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t)(((q63_t) alpha * (*px++)) >> 32);
+ *pb = ref_sat_q31((q63_t)*pb + (coef << 1));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = numTaps - 1;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q31_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0, d = 0; /* error, reference data sample */
+ q31_t w = 0, in; /* weight factor and state */
+ q31_t x0; /* temporary variable to hold input sample */
+ q63_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy = (q31_t)((((q63_t)energy << 32) - (((q63_t)x0 * x0) << 1)) >> 32) & 0xffffffff;
+ energy = (q31_t)(((((q63_t)in * in) << 1) + ((q63_t)energy << 32)) >> 32) & 0xffffffff;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q31_t)acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q31_t)acc;
+ *pErr++ = e;
+
+ /* Calculation of product of (e * mu) */
+ errorXmu = (q63_t)e * mu;
+
+ /* Weighting factor for the normalized version */
+ w = ref_sat_q31(errorXmu / (energy + DELTA_Q31));
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ /* coef is in 2.30 format */
+ coef = (q31_t)(((q63_t)w * (*px++)) >> 32);
+ /* get coef in 1.31 format by left shifting */
+ *pb = ref_sat_q31((q63_t)*pb + (coef << 1U));
+ /* update coefficient buffer to next coefficient */
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q31_t)energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop for (numTaps - 1U) samples copy */
+ tapCnt = numTaps - 1;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t mu = S->mu; /* Adaptive factor */
+ q15_t *px; /* Temporary pointer for state */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0; /* error of data sample */
+ q15_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
+ int32_t uShift = 32 - lShift;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t)((q31_t)(*px++) * (*pb++));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = ref_sat_q15(acc);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t)acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q15_t)acc;
+
+ *pErr++ = (q15_t)e;
+
+ /* Compute alpha i.e. intermediate constant for taps update */
+ alpha = (q15_t)(((q31_t)e * mu) >> 15);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) ref_sat_q15(coef);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = numTaps - 1;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q15_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q31_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0, d = 0; /* error, reference data sample */
+ q15_t w = 0, in; /* weight factor and state */
+ q15_t x0; /* temporary variable to hold input sample */
+ q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
+ //q31_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
+ int32_t uShift = 32 - lShift;
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= (((q31_t)x0 * x0) >> 15) & 0xffff;
+ energy += (((q31_t)in * in) >> 15) & 0xffff;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q31_t)*px++ * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = ref_sat_q15(acc);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q15_t) acc;
+ *pErr++ = e;
+
+#if 0
+ /* Calculation of e * mu value */
+ errorXmu = (q31_t) e * mu;
+
+ /* Calculation of (e * mu) /energy value */
+ acc = errorXmu / (energy + DELTA_Q15);
+#endif
+
+ /* Calculation of 1/energy */
+ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+ &oneByEnergy, S->recipTable);
+
+ /* Calculation of e * mu value */
+ errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+ /* Calculation of (e * mu) * (1/energy) value */
+ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+ /* Weighting factor for the normalized version */
+ w = ref_sat_q15((q31_t)acc);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = *pb + (((q31_t)w * (*px++)) >> 15);
+ *pb++ = ref_sat_q15(coef);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q15_t)energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* copy (numTaps - 1U) data */
+ tapCnt = numTaps - 1;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}