summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c')
-rw-r--r--fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c1365
1 files changed, 1365 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c b/fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
new file mode 100644
index 0000000..3dd009c
--- /dev/null
+++ b/fw/cdc-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
@@ -0,0 +1,1365 @@
+/**
+ ******************************************************************************
+ * @file stm32f0xx_hal_rcc.c
+ * @author MCD Application Team
+ * @brief RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Reset and Clock Control (RCC) peripheral:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### RCC specific features #####
+ ==============================================================================
+ [..]
+ After reset the device is running from Internal High Speed oscillator
+ (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
+ and all peripherals are off except internal SRAM, Flash and JTAG.
+ (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
+ all peripherals mapped on these buses are running at HSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in input floating state, except the JTAG pins which
+ are assigned to be used for debug purpose.
+ [..] Once the device started from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (+) Configure the System clock frequency and Flash settings
+ (+) Configure the AHB and APB buses prescalers
+ (+) Enable the clock for the peripheral(s) to be used
+ (+) Configure the clock source(s) for peripherals whose clocks are not
+ derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..)
+
+ ##### RCC Limitations #####
+ ==============================================================================
+ [..]
+ A delay between an RCC peripheral clock enable and the effective peripheral
+ enabling should be taken into account in order to manage the peripheral read/write
+ from/to registers.
+ (+) This delay depends on the peripheral mapping.
+ (++) AHB & APB peripherals, 1 dummy read is necessary
+
+ [..]
+ Workarounds:
+ (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
+ inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f0xx_hal.h"
+
+/** @addtogroup STM32F0xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCC RCC
+* @brief RCC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup RCC_Private_Constants RCC Private Constants
+ * @{
+ */
+/**
+ * @}
+ */
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCC_Private_Macros RCC Private Macros
+ * @{
+ */
+
+#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define MCO1_GPIO_PORT GPIOA
+#define MCO1_PIN GPIO_PIN_8
+
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup RCC_Private_Variables RCC Private Variables
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Functions RCC Exported Functions
+ * @{
+ */
+
+/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to configure the internal/external oscillators
+ (HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK,
+ AHB and APB1).
+
+ [..] Internal/external clock and PLL configuration
+ (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+ The HSI clock can be used also to clock the USART and I2C peripherals.
+
+ (#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock
+ the ADC peripheral.
+
+ (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+
+ (#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks:
+ (++) The first output is used to generate the high speed system clock (up to 48 MHz)
+ (++) The second output is used to generate the clock for the USB FS (48 MHz)
+ (++) The third output may be used to generate the clock for the TIM, I2C and USART
+ peripherals (up to 48 MHz)
+
+ (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
+ and if a HSE clock failure occurs(HSE used directly or through PLL as System
+ clock source), the System clocks automatically switched to HSI and an interrupt
+ is generated if enabled. The interrupt is linked to the Cortex-M0 NMI
+ (Non-Maskable Interrupt) exception vector.
+
+ (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL
+ clock (divided by 2) output on pin (such as PA8 pin).
+
+ [..] System, AHB and APB buses clocks configuration
+ (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable
+ prescaler and used to clock the CPU, memory and peripherals mapped
+ on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived
+ from AHB clock through configurable prescalers and used to clock
+ the peripherals mapped on these buses. You can use
+ "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
+
+ (#) All the peripheral clocks are derived from the System clock (SYSCLK) except:
+ (++) The FLASH program/erase clock which is always HSI 8MHz clock.
+ (++) The USB 48 MHz clock which is derived from the PLL VCO clock.
+ (++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
+ (++) The I2C clock which can be derived as well from HSI 8MHz clock.
+ (++) The ADC clock which is derived from PLL output.
+ (++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
+ (HSE divided by a programmable prescaler). The System clock (SYSCLK)
+ frequency must be higher or equal to the RTC clock frequency.
+ (++) IWDG clock which is always the LSI clock.
+
+ (#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz,
+ Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
+
+ (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
+ prefetch is disabled.
+ @endverbatim
+ * @{
+ */
+
+/*
+ Additional consideration on the SYSCLK based on Latency settings:
+ +-----------------------------------------------+
+ | Latency | SYSCLK clock frequency (MHz) |
+ |---------------|-------------------------------|
+ |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
+ |---------------|-------------------------------|
+ |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
+ +-----------------------------------------------+
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - HSI ON and used as system clock source
+ * - HSE and PLL OFF
+ * - AHB, APB1 prescaler set to 1.
+ * - CSS and MCO1 OFF
+ * - All interrupts disabled
+ * - All interrupt and reset flags cleared
+ * @note This function does not modify the configuration of the
+ * - Peripheral clocks
+ * - LSI, LSE and RTC clocks
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_DeInit(void)
+{
+ uint32_t tickstart;
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Set HSION bit, HSITRIM[4:0] bits to the reset value*/
+ SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
+
+ /* Wait till HSI is ready */
+ while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
+ CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO);
+
+ /* Wait till HSI as SYSCLK status is enabled */
+ while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET)
+ {
+ if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Update the SystemCoreClock global variable for HSI as system clock source */
+ SystemCoreClock = HSI_VALUE;
+
+ /* Adapt Systick interrupt period */
+ if (HAL_InitTick(uwTickPrio) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Reset HSEON, CSSON, PLLON bits */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON);
+
+ /* Reset HSEBYP bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
+
+ /* Get start tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLRDY is cleared */
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reset CFGR register */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Reset CFGR2 register */
+ CLEAR_REG(RCC->CFGR2);
+
+ /* Reset CFGR3 register */
+ CLEAR_REG(RCC->CFGR3);
+
+ /* Disable all interrupts */
+ CLEAR_REG(RCC->CIR);
+
+ /* Clear all reset flags */
+ __HAL_RCC_CLEAR_RESET_FLAGS();
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the RCC Oscillators according to the specified parameters in the
+ * RCC_OscInitTypeDef.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC Oscillators.
+ * @note The PLL is not disabled when used as system clock.
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
+ * supported by this macro. User should request a transition to LSE Off
+ * first and then LSE On or LSE Bypass.
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this macro. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ uint32_t tickstart;
+ uint32_t pll_config;
+ uint32_t pll_config2;
+
+ /* Check Null pointer */
+ if(RCC_OscInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
+
+ /*------------------------------- HSE Configuration ------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
+
+ /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
+ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
+ || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
+ {
+ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ /* Set the new HSE configuration ---------------------------------------*/
+ __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
+
+
+ /* Check the HSE State */
+ if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- HSI Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
+ assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
+
+ /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
+ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
+ || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
+ {
+ /* When HSI is used as system clock it will not disabled */
+ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
+ {
+ return HAL_ERROR;
+ }
+ /* Otherwise, just the calibration is allowed */
+ else
+ {
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ }
+ else
+ {
+ /* Check the HSI State */
+ if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------ LSI Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
+
+ /* Check the LSI State */
+ if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
+ {
+ /* Enable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*------------------------------ LSE Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
+ {
+ FlagStatus pwrclkchanged = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
+
+ /* Update LSE configuration in Backup Domain control register */
+ /* Requires to enable write access to Backup Domain of necessary */
+ if(__HAL_RCC_PWR_IS_CLK_DISABLED())
+ {
+ __HAL_RCC_PWR_CLK_ENABLE();
+ pwrclkchanged = SET;
+ }
+
+ if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
+ {
+ /* Enable write access to Backup domain */
+ SET_BIT(PWR->CR, PWR_CR_DBP);
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
+ {
+ if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Set the new LSE configuration -----------------------------------------*/
+ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
+ /* Check the LSE State */
+ if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Require to disable power clock if necessary */
+ if(pwrclkchanged == SET)
+ {
+ __HAL_RCC_PWR_CLK_DISABLE();
+ }
+ }
+
+ /*----------------------------- HSI14 Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State));
+ assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue));
+
+ /* Check the HSI14 State */
+ if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON)
+ {
+ /* Disable ADC control of the Internal High Speed oscillator HSI14 */
+ __HAL_RCC_HSI14ADC_DISABLE();
+
+ /* Enable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI14_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
+ __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
+ }
+ else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL)
+ {
+ /* Enable ADC control of the Internal High Speed oscillator HSI14 */
+ __HAL_RCC_HSI14ADC_ENABLE();
+
+ /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
+ __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
+ }
+ else
+ {
+ /* Disable ADC control of the Internal High Speed oscillator HSI14 */
+ __HAL_RCC_HSI14ADC_DISABLE();
+
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI14_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+#if defined(RCC_HSI48_SUPPORT)
+ /*----------------------------- HSI48 Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
+
+ /* When the HSI48 is used as system clock it is not allowed to be disabled */
+ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) ||
+ ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48)))
+ {
+ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ /* Check the HSI48 State */
+ if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+#endif /* RCC_HSI48_SUPPORT */
+
+ /*-------------------------------- PLL Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
+ if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
+ {
+ /* Check if the PLL is used as system clock or not */
+ if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ {
+ if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
+ assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
+ assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV));
+
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the main PLL clock source, predivider and multiplication factor. */
+ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
+ RCC_OscInitStruct->PLL.PREDIV,
+ RCC_OscInitStruct->PLL.PLLMUL);
+ /* Enable the main PLL. */
+ __HAL_RCC_PLL_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
+ {
+ if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Check if there is a request to disable the PLL used as System clock source */
+ if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF)
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ /* Do not return HAL_ERROR if request repeats the current configuration */
+ pll_config = RCC->CFGR;
+ pll_config2 = RCC->CFGR2;
+ if((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
+ (READ_BIT(pll_config2, RCC_CFGR2_PREDIV) != RCC_OscInitStruct->PLL.PREDIV) ||
+ (READ_BIT(pll_config, RCC_CFGR_PLLMUL) != RCC_OscInitStruct->PLL.PLLMUL))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
+ * parameters in the RCC_ClkInitStruct.
+ * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC peripheral.
+ * @param FLatency FLASH Latency
+ * The value of this parameter depend on device used within the same series
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
+ *
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ *
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after start-up delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
+ * currently used as system clock source.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
+{
+ uint32_t tickstart;
+
+ /* Check Null pointer */
+ if(RCC_ClkInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
+ assert_param(IS_FLASH_LATENCY(FLatency));
+
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) of the device. */
+
+ /* Increasing the number of wait states because of higher CPU frequency */
+ if(FLatency > __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if(__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
+ {
+ /* Set the highest APB divider in order to ensure that we do not go through
+ a non-spec phase whatever we decrease or increase HCLK. */
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16);
+ }
+
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+
+ /*------------------------- SYSCLK Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
+ {
+ assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
+
+ /* HSE is selected as System Clock Source */
+ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
+ {
+ /* Check the HSE ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* PLL is selected as System Clock Source */
+ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
+ {
+ /* Check the PLL ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+#if defined(RCC_CFGR_SWS_HSI48)
+ /* HSI48 is selected as System Clock Source */
+ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
+ {
+ /* Check the HSI48 ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+#endif /* RCC_CFGR_SWS_HSI48 */
+ /* HSI is selected as System Clock Source */
+ else
+ {
+ /* Check the HSI ready flag */
+ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
+ {
+ return HAL_ERROR;
+ }
+ }
+ __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
+ {
+ if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if(FLatency < __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if(__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
+
+ /* Configure the source of time base considering new system clocks settings*/
+ HAL_InitTick (TICK_INT_PRIORITY);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
+ * @brief RCC clocks control functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+
+ @endverbatim
+ * @{
+ */
+
+#if defined(RCC_CFGR_MCOPRE)
+/**
+ * @brief Selects the clock source to output on MCO pin.
+ * @note MCO pin should be configured in alternate function mode.
+ * @param RCC_MCOx specifies the output direction for the clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
+ * @param RCC_MCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System Clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock
+ @if STM32F042x6
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F048xx
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F071xB
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F072xB
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F078xx
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F091xC
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elseif STM32F098xx
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F030x6
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F030xC
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F031x6
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F038xx
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F070x6
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @elif STM32F070xB
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
+ @endif
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
+ * @param RCC_MCODiv specifies the MCO DIV.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
+ * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
+ * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
+ * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
+ * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
+ * @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock
+ * @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock
+ * @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock
+ * @retval None
+ */
+#else
+/**
+ * @brief Selects the clock source to output on MCO pin.
+ * @note MCO pin should be configured in alternate function mode.
+ * @param RCC_MCOx specifies the output direction for the clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
+ * @param RCC_MCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
+ * @param RCC_MCODiv specifies the MCO DIV.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
+ * @retval None
+ */
+#endif
+void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
+{
+ GPIO_InitTypeDef gpio;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO(RCC_MCOx));
+ assert_param(IS_RCC_MCODIV(RCC_MCODiv));
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
+
+ /* Configure the MCO1 pin in alternate function mode */
+ gpio.Mode = GPIO_MODE_AF_PP;
+ gpio.Speed = GPIO_SPEED_FREQ_HIGH;
+ gpio.Pull = GPIO_NOPULL;
+ gpio.Pin = MCO1_PIN;
+ gpio.Alternate = GPIO_AF0_MCO;
+
+ /* MCO1 Clock Enable */
+ MCO1_CLK_ENABLE();
+
+ HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
+
+ /* Configure the MCO clock source */
+ __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
+}
+
+/**
+ * @brief Enables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
+ * @retval None
+ */
+void HAL_RCC_EnableCSS(void)
+{
+ SET_BIT(RCC->CR, RCC_CR_CSSON) ;
+}
+
+/**
+ * @brief Disables the Clock Security System.
+ * @retval None
+ */
+void HAL_RCC_DisableCSS(void)
+{
+ CLEAR_BIT(RCC->CR, RCC_CR_CSSON) ;
+}
+
+/**
+ * @brief Returns the SYSCLK frequency
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**)
+ * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**) or depending on STM32F0xxxx devices either a value based
+ * on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the
+ * PLL factor.
+ * @note (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @note This function can be used by the user application to compute the
+ * baud-rate for the communication peripherals or configure other parameters.
+ *
+ * @note Each time SYSCLK changes, this function must be called to update the
+ * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @retval SYSCLK frequency
+ */
+uint32_t HAL_RCC_GetSysClockFreq(void)
+{
+ const uint8_t aPLLMULFactorTable[16] = { 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U,
+ 10U, 11U, 12U, 13U, 14U, 15U, 16U, 16U};
+ const uint8_t aPredivFactorTable[16] = { 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U,
+ 9U,10U, 11U, 12U, 13U, 14U, 15U, 16U};
+
+ uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
+ uint32_t sysclockfreq = 0U;
+
+ tmpreg = RCC->CFGR;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ switch (tmpreg & RCC_CFGR_SWS)
+ {
+ case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
+ {
+ sysclockfreq = HSE_VALUE;
+ break;
+ }
+ case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
+ {
+ pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
+ prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER];
+ if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
+ {
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */
+ pllclk = (uint32_t)((uint64_t) HSE_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul);
+ }
+#if defined(RCC_CFGR_PLLSRC_HSI48_PREDIV)
+ else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48)
+ {
+ /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */
+ pllclk = (uint32_t)((uint64_t) HSI48_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul);
+ }
+#endif /* RCC_CFGR_PLLSRC_HSI48_PREDIV */
+ else
+ {
+#if (defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC))
+ /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */
+ pllclk = (uint32_t)((uint64_t) HSI_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul);
+#else
+ /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
+ pllclk = (uint32_t)((uint64_t) (HSI_VALUE >> 1U) * ((uint64_t) pllmul));
+#endif
+ }
+ sysclockfreq = pllclk;
+ break;
+ }
+#if defined(RCC_CFGR_SWS_HSI48)
+ case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */
+ {
+ sysclockfreq = HSI48_VALUE;
+ break;
+ }
+#endif /* RCC_CFGR_SWS_HSI48 */
+ case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
+ default: /* HSI used as system clock */
+ {
+ sysclockfreq = HSI_VALUE;
+ break;
+ }
+ }
+ return sysclockfreq;
+}
+
+/**
+ * @brief Returns the HCLK frequency
+ * @note Each time HCLK changes, this function must be called to update the
+ * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated within this function
+ * @retval HCLK frequency
+ */
+uint32_t HAL_RCC_GetHCLKFreq(void)
+{
+ return SystemCoreClock;
+}
+
+/**
+ * @brief Returns the PCLK1 frequency
+ * @note Each time PCLK1 changes, this function must be called to update the
+ * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency
+ */
+uint32_t HAL_RCC_GetPCLK1Freq(void)
+{
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_BITNUMBER]);
+}
+
+/**
+ * @brief Configures the RCC_OscInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * will be configured.
+ * @retval None
+ */
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ /* Check the parameters */
+ assert_param(RCC_OscInitStruct != NULL);
+
+ /* Set all possible values for the Oscillator type parameter ---------------*/
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
+ | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI14;
+#if defined(RCC_HSI48_SUPPORT)
+ RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48;
+#endif /* RCC_HSI48_SUPPORT */
+
+
+ /* Get the HSE configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ }
+ else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+
+ /* Get the HSI configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
+ }
+
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber);
+
+ /* Get the LSE configuration -----------------------------------------------*/
+ if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ }
+ else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
+ }
+
+ /* Get the HSI14 configuration -----------------------------------------------*/
+ if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON)
+ {
+ RCC_OscInitStruct->HSI14State = RCC_HSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSI14State = RCC_HSI_OFF;
+ }
+
+ RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_HSI14TRIM_BIT_NUMBER);
+
+#if defined(RCC_HSI48_SUPPORT)
+ /* Get the HSI48 configuration if any-----------------------------------------*/
+ RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
+#endif /* RCC_HSI48_SUPPORT */
+
+ /* Get the PLL configuration -----------------------------------------------*/
+ if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
+ }
+ RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
+ RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
+ RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV);
+}
+
+/**
+ * @brief Get the RCC_ClkInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
+ * contains the current clock configuration.
+ * @param pFLatency Pointer on the Flash Latency.
+ * @retval None
+ */
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
+{
+ /* Check the parameters */
+ assert_param(RCC_ClkInitStruct != NULL);
+ assert_param(pFLatency != NULL);
+
+ /* Set all possible values for the Clock type parameter --------------------*/
+ RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
+
+ /* Get the SYSCLK configuration --------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
+
+ /* Get the HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
+ /* Get the Flash Wait State (Latency) configuration ------------------------*/
+ *pFLatency = __HAL_FLASH_GET_LATENCY();
+}
+
+/**
+ * @brief This function handles the RCC CSS interrupt request.
+ * @note This API should be called under the NMI_Handler().
+ * @retval None
+ */
+void HAL_RCC_NMI_IRQHandler(void)
+{
+ /* Check RCC CSSF flag */
+ if(__HAL_RCC_GET_IT(RCC_IT_CSS))
+ {
+ /* RCC Clock Security System interrupt user callback */
+ HAL_RCC_CSSCallback();
+
+ /* Clear RCC CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
+ }
+}
+
+/**
+ * @brief RCC Clock Security System interrupt callback
+ * @retval none
+ */
+__weak void HAL_RCC_CSSCallback(void)
+{
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_RCC_CSSCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/