summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c')
-rw-r--r--fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c413
1 files changed, 413 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
new file mode 100644
index 0000000..b1578a5
--- /dev/null
+++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
@@ -0,0 +1,413 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cmplx_mat_mult_q15.c
+ * Description: Q15 complex matrix multiplication
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup CmplxMatrixMult
+ * @{
+ */
+
+
+/**
+ * @brief Q15 Complex matrix multiplication
+ * @param[in] *pSrcA points to the first input complex matrix structure
+ * @param[in] *pSrcB points to the second input complex matrix structure
+ * @param[out] *pDst points to output complex matrix structure
+ * @param[in] *pScratch points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * \par Conditions for optimum performance
+ * Input, output and state buffers should be aligned by 32-bit
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch buffers should be aligned by 32-bit
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator. The inputs to the
+ * multiplications are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate
+ * results are accumulated in a 64-bit accumulator in 34.30 format. This approach
+ * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
+ * truncated to 34.15 format by discarding the low 15 bits and then saturated to
+ * 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function.
+ *
+ */
+
+
+
+
+arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch)
+{
+ /* accumulator */
+ q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
+ uint16_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+ q63_t sumReal, sumImag;
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+ q15_t in; /* Temporary variable to hold the input value */
+ q15_t a, b, c, d;
+#else
+ q31_t in; /* Temporary variable to hold the input value */
+ q31_t prod1, prod2;
+ q31_t pSourceA, pSourceB;
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif
+ {
+ /* Matrix transpose */
+ do
+ {
+ /* Apply loop unrolling and exchange the columns with row elements */
+ col = numColsB >> 2;
+
+ /* The pointer px is set to starting address of the column being processed */
+ px = pSrcBT + i;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (col > 0U)
+ {
+#ifdef UNALIGNED_SUPPORT_DISABLE
+ /* Read two elements from the row */
+ in = *pInB++;
+ *px = in;
+ in = *pInB++;
+ px[1] = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from the row */
+ in = *pInB++;
+ *px = in;
+ in = *pInB++;
+ px[1] = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from the row */
+ in = *pInB++;
+ *px = in;
+ in = *pInB++;
+ px[1] = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from the row */
+ in = *pInB++;
+ *px = in;
+ in = *pInB++;
+ px[1] = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Decrement the column loop counter */
+ col--;
+ }
+
+ /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ col = numColsB % 0x4U;
+
+ while (col > 0U)
+ {
+ /* Read two elements from the row */
+ in = *pInB++;
+ *px = in;
+ in = *pInB++;
+ px[1] = in;
+#else
+
+ /* Read two elements from the row */
+ in = *__SIMD32(pInB)++;
+
+ *__SIMD32(px) = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+
+ /* Read two elements from the row */
+ in = *__SIMD32(pInB)++;
+
+ *__SIMD32(px) = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from the row */
+ in = *__SIMD32(pInB)++;
+
+ *__SIMD32(px) = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from the row */
+ in = *__SIMD32(pInB)++;
+
+ *__SIMD32(px) = in;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Decrement the column loop counter */
+ col--;
+ }
+
+ /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ col = numColsB % 0x4U;
+
+ while (col > 0U)
+ {
+ /* Read two elements from the row */
+ in = *__SIMD32(pInB)++;
+
+ *__SIMD32(px) = in;
+#endif
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += numRowsB * 2;
+
+ /* Decrement the column loop counter */
+ col--;
+ }
+
+ i = i + 2U;
+
+ /* Decrement the row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Reset the variables for the usage in the following multiplication process */
+ row = numRowsA;
+ i = 0U;
+ px = pDst->pData;
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the transposed pSrcB data */
+ pInB = pSrcBT;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal = 0;
+ sumImag = 0;
+
+ /* Apply loop unrolling and compute 2 MACs simultaneously. */
+ colCnt = numColsA >> 1;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pInA = pSrcA->pData + i * 2;
+
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ /* read real and imag values from pSrcA buffer */
+ a = *pInA;
+ b = *(pInA + 1U);
+ /* read real and imag values from pSrcB buffer */
+ c = *pInB;
+ d = *(pInB + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a *c;
+ sumImag += (q31_t) a *d;
+ sumReal -= (q31_t) b *d;
+ sumImag += (q31_t) b *c;
+
+ /* read next real and imag values from pSrcA buffer */
+ a = *(pInA + 2U);
+ b = *(pInA + 3U);
+ /* read next real and imag values from pSrcB buffer */
+ c = *(pInB + 2U);
+ d = *(pInB + 3U);
+
+ /* update pointer */
+ pInA += 4U;
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a *c;
+ sumImag += (q31_t) a *d;
+ sumReal -= (q31_t) b *d;
+ sumImag += (q31_t) b *c;
+ /* update pointer */
+ pInB += 4U;
+#else
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = *__SIMD32(pInA)++;
+ pSourceB = *__SIMD32(pInB)++;
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = *__SIMD32(pInA)++;
+ pSourceB = *__SIMD32(pInB)++;
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* process odd column samples */
+ if ((numColsA & 0x1U) > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ a = *pInA++;
+ b = *pInA++;
+ c = *pInB++;
+ d = *pInB++;
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a *c;
+ sumImag += (q31_t) a *d;
+ sumReal -= (q31_t) b *d;
+ sumImag += (q31_t) b *c;
+
+#else
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = *__SIMD32(pInA)++;
+ pSourceB = *__SIMD32(pInB)++;
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+ }
+
+ /* Saturate and store the result in the destination buffer */
+
+ *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
+ *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ i = i + numColsA;
+
+ /* Decrement the row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */