summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c')
-rw-r--r--fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c586
1 files changed, 586 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
new file mode 100644
index 0000000..684640e
--- /dev/null
+++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_decimate_fast_q15.c
@@ -0,0 +1,586 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_decimate_fast_q15.c
+ * Description: Fast Q15 FIR Decimator
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, state buffers should be aligned by 32-bit
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * This fast version uses a 32-bit accumulator with 2.30 format.
+ * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around and distorts the result.
+ * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2).
+ * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
+ * Both the slow and the fast versions use the same instance structure.
+ * Use the function <code>arm_fir_decimate_init_q15()</code> to initialize the filter structure.
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulators */
+ q31_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLAD(x0, c0, acc0);
+ acc1 = __SMLAD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c1 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c0, sum0);
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c1, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLAD(x0, c0, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+#else
+
+
+void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */
+ q31_t sum0; /* Accumulators */
+ q31_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1U);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+ while (blkCnt > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while (blkCntN3 > 0U)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while (--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while (tapCnt > 0U)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1U) >> 2U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1U) % 0x04U;
+
+ /* copy data */
+ while (i > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+/**
+ * @} end of FIR_decimate group
+ */