summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c')
-rw-r--r--fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c635
1 files changed, 635 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
new file mode 100644
index 0000000..906f7ab
--- /dev/null
+++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_f32.c
@@ -0,0 +1,635 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_conv_f32.c
+ * Description: Convolution of floating-point sequences
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @defgroup Conv Convolution
+ *
+ * Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
+ * Convolution is similar to correlation and is frequently used in filtering and data analysis.
+ * The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
+ * The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
+ *
+ * \par Algorithm
+ * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
+ * Then the convolution
+ *
+ * <pre>
+ * c[n] = a[n] * b[n]
+ * </pre>
+ *
+ * \par
+ * is defined as
+ * \image html ConvolutionEquation.gif
+ * \par
+ * Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
+ * <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
+ * <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
+ * The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
+ *
+ * \par
+ * Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
+ * the signal <code>b[n]</code> slides over <code>a[n]</code>.
+ * For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
+ *
+ * \par
+ * Note that convolution is a commutative operation:
+ *
+ * <pre>
+ * a[n] * b[n] = b[n] * a[n].
+ * </pre>
+ *
+ * \par
+ * This means that switching the A and B arguments to the convolution functions has no effect.
+ *
+ * <b>Fixed-Point Behavior</b>
+ *
+ * \par
+ * Convolution requires summing up a large number of intermediate products.
+ * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
+ * Refer to the function specific documentation below for further details of the particular algorithm used.
+ *
+ *
+ * <b>Fast Versions</b>
+ *
+ * \par
+ * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
+ * the input signals should be scaled down to avoid intermediate overflows.
+ *
+ *
+ * <b>Opt Versions</b>
+ *
+ * \par
+ * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
+ * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
+ */
+
+/**
+ * @addtogroup Conv
+ * @{
+ */
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst)
+{
+
+
+#if defined (ARM_MATH_DSP)
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ float32_t *pIn1; /* inputA pointer */
+ float32_t *pIn2; /* inputB pointer */
+ float32_t *pOut = pDst; /* output pointer */
+ float32_t *px; /* Intermediate inputA pointer */
+ float32_t *py; /* Intermediate inputB pointer */
+ float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
+ float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
+ float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if (srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+ /* The function is internally
+ * divided into three stages according to the number of multiplications that has to be
+ * taken place between inputA samples and inputB samples. In the first stage of the
+ * algorithm, the multiplications increase by one for every iteration.
+ * In the second stage of the algorithm, srcBLen number of multiplications are done.
+ * In the third stage of the algorithm, the multiplications decrease by one
+ * for every iteration. */
+
+ /* The algorithm is implemented in three stages.
+ The loop counters of each stage is initiated here. */
+ blockSize1 = srcBLen - 1U;
+ blockSize2 = srcALen - (srcBLen - 1U);
+ blockSize3 = blockSize1;
+
+ /* --------------------------
+ * initializations of stage1
+ * -------------------------*/
+
+ /* sum = x[0] * y[0]
+ * sum = x[0] * y[1] + x[1] * y[0]
+ * ....
+ * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
+ */
+
+ /* In this stage the MAC operations are increased by 1 for every iteration.
+ The count variable holds the number of MAC operations performed */
+ count = 1U;
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ py = pIn2;
+
+
+ /* ------------------------
+ * Stage1 process
+ * ----------------------*/
+
+ /* The first stage starts here */
+ while (blockSize1 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = count >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* x[0] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* x[1] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* x[2] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* x[3] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = count % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ py = pIn2 + count;
+ px = pIn1;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Decrement the loop counter */
+ blockSize1--;
+ }
+
+ /* --------------------------
+ * Initializations of stage2
+ * ------------------------*/
+
+ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
+ * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
+ * ....
+ * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
+ */
+
+ /* Working pointer of inputA */
+ px = pIn1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* count is index by which the pointer pIn1 to be incremented */
+ count = 0U;
+
+ /* -------------------
+ * Stage2 process
+ * ------------------*/
+
+ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
+ * So, to loop unroll over blockSize2,
+ * srcBLen should be greater than or equal to 4 */
+ if (srcBLen >= 4U)
+ {
+ /* Loop unroll over blockSize2, by 4 */
+ blkCnt = blockSize2 >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+
+ /* read x[0], x[1], x[2] samples */
+ x0 = *(px++);
+ x1 = *(px++);
+ x2 = *(px++);
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ do
+ {
+ /* Read y[srcBLen - 1] sample */
+ c0 = *(py--);
+
+ /* Read x[3] sample */
+ x3 = *(px);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[0] * y[srcBLen - 1] */
+ acc0 += x0 * c0;
+
+ /* acc1 += x[1] * y[srcBLen - 1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += x[2] * y[srcBLen - 1] */
+ acc2 += x2 * c0;
+
+ /* acc3 += x[3] * y[srcBLen - 1] */
+ acc3 += x3 * c0;
+
+ /* Read y[srcBLen - 2] sample */
+ c0 = *(py--);
+
+ /* Read x[4] sample */
+ x0 = *(px + 1U);
+
+ /* Perform the multiply-accumulate */
+ /* acc0 += x[1] * y[srcBLen - 2] */
+ acc0 += x1 * c0;
+ /* acc1 += x[2] * y[srcBLen - 2] */
+ acc1 += x2 * c0;
+ /* acc2 += x[3] * y[srcBLen - 2] */
+ acc2 += x3 * c0;
+ /* acc3 += x[4] * y[srcBLen - 2] */
+ acc3 += x0 * c0;
+
+ /* Read y[srcBLen - 3] sample */
+ c0 = *(py--);
+
+ /* Read x[5] sample */
+ x1 = *(px + 2U);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[2] * y[srcBLen - 3] */
+ acc0 += x2 * c0;
+ /* acc1 += x[3] * y[srcBLen - 2] */
+ acc1 += x3 * c0;
+ /* acc2 += x[4] * y[srcBLen - 2] */
+ acc2 += x0 * c0;
+ /* acc3 += x[5] * y[srcBLen - 2] */
+ acc3 += x1 * c0;
+
+ /* Read y[srcBLen - 4] sample */
+ c0 = *(py--);
+
+ /* Read x[6] sample */
+ x2 = *(px + 3U);
+ px += 4U;
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[3] * y[srcBLen - 4] */
+ acc0 += x3 * c0;
+ /* acc1 += x[4] * y[srcBLen - 4] */
+ acc1 += x0 * c0;
+ /* acc2 += x[5] * y[srcBLen - 4] */
+ acc2 += x1 * c0;
+ /* acc3 += x[6] * y[srcBLen - 4] */
+ acc3 += x2 * c0;
+
+
+ } while (--k);
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Read y[srcBLen - 5] sample */
+ c0 = *(py--);
+
+ /* Read x[7] sample */
+ x3 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ /* acc0 += x[4] * y[srcBLen - 5] */
+ acc0 += x0 * c0;
+ /* acc1 += x[5] * y[srcBLen - 5] */
+ acc1 += x1 * c0;
+ /* acc2 += x[6] * y[srcBLen - 5] */
+ acc2 += x2 * c0;
+ /* acc3 += x[7] * y[srcBLen - 5] */
+ acc3 += x3 * c0;
+
+ /* Reuse the present samples for the next MAC */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = acc0;
+ *pOut++ = acc1;
+ *pOut++ = acc2;
+ *pOut++ = acc3;
+
+ /* Increment the pointer pIn1 index, count by 4 */
+ count += 4U;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+ /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize2 % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = srcBLen >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+ else
+ {
+ /* If the srcBLen is not a multiple of 4,
+ * the blockSize2 loop cannot be unrolled by 4 */
+ blkCnt = blockSize2;
+
+ while (blkCnt > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* srcBLen number of MACS should be performed */
+ k = srcBLen;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Increment the MAC count */
+ count++;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = pIn1 + count;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+ }
+
+
+ /* --------------------------
+ * Initializations of stage3
+ * -------------------------*/
+
+ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
+ * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
+ * ....
+ * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
+ * sum += x[srcALen-1] * y[srcBLen-1]
+ */
+
+ /* In this stage the MAC operations are decreased by 1 for every iteration.
+ The blockSize3 variable holds the number of MAC operations performed */
+
+ /* Working pointer of inputA */
+ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U);
+ px = pSrc1;
+
+ /* Working pointer of inputB */
+ pSrc2 = pIn2 + (srcBLen - 1U);
+ py = pSrc2;
+
+ /* -------------------
+ * Stage3 process
+ * ------------------*/
+
+ while (blockSize3 > 0U)
+ {
+ /* Accumulator is made zero for every iteration */
+ sum = 0.0f;
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ k = blockSize3 >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
+ ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+ while (k > 0U)
+ {
+ /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
+ sum += *px++ * *py--;
+
+ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ k = blockSize3 % 0x4U;
+
+ while (k > 0U)
+ {
+ /* Perform the multiply-accumulates */
+ /* sum += x[srcALen-1] * y[srcBLen-1] */
+ sum += *px++ * *py--;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Update the inputA and inputB pointers for next MAC calculation */
+ px = ++pSrc1;
+ py = pSrc2;
+
+ /* Decrement the loop counter */
+ blockSize3--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ float32_t *pIn1 = pSrcA; /* inputA pointer */
+ float32_t *pIn2 = pSrcB; /* inputB pointer */
+ float32_t sum; /* Accumulator */
+ uint32_t i, j; /* loop counters */
+
+ /* Loop to calculate convolution for output length number of times */
+ for (i = 0U; i < ((srcALen + srcBLen) - 1U); i++)
+ {
+ /* Initialize sum with zero to carry out MAC operations */
+ sum = 0.0f;
+
+ /* Loop to perform MAC operations according to convolution equation */
+ for (j = 0U; j <= i; j++)
+ {
+ /* Check the array limitations */
+ if ((((i - j) < srcBLen) && (j < srcALen)))
+ {
+ /* z[i] += x[i-j] * y[j] */
+ sum += pIn1[j] * pIn2[i - j];
+ }
+ }
+ /* Store the output in the destination buffer */
+ pDst[i] = sum;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+/**
+ * @} end of Conv group
+ */