summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c')
-rw-r--r--fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c259
1 files changed, 259 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c b/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
new file mode 100644
index 0000000..d984e2f
--- /dev/null
+++ b/fw/cdc-dials/Drivers/CMSIS/DSP/Examples/ARM/arm_signal_converge_example/arm_signal_converge_example_f32.c
@@ -0,0 +1,259 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
+*
+* $Date: 17. January 2013
+* $Revision: V1.4.0
+*
+* Project: CMSIS DSP Library
+* Title: arm_signal_converge_example_f32.c
+*
+* Description: Example code demonstrating convergence of an adaptive
+* filter.
+*
+* Target Processor: Cortex-M4/Cortex-M3
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+ * -------------------------------------------------------------------- */
+
+/**
+ * @ingroup groupExamples
+ */
+
+/**
+ * @defgroup SignalConvergence Signal Convergence Example
+ *
+ * \par Description:
+ * \par
+ * Demonstrates the ability of an adaptive filter to "learn" the transfer function of
+ * a FIR lowpass filter using the Normalized LMS Filter, Finite Impulse
+ * Response (FIR) Filter, and Basic Math Functions.
+ *
+ * \par Algorithm:
+ * \par
+ * The figure below illustrates the signal flow in this example. Uniformly distributed white
+ * noise is passed through an FIR lowpass filter. The output of the FIR filter serves as the
+ * reference input of the adaptive filter (normalized LMS filter). The white noise is input
+ * to the adaptive filter. The adaptive filter learns the transfer function of the FIR filter.
+ * The filter outputs two signals: (1) the output of the internal adaptive FIR filter, and
+ * (2) the error signal which is the difference between the adaptive filter and the reference
+ * output of the FIR filter. Over time as the adaptive filter learns the transfer function
+ * of the FIR filter, the first output approaches the reference output of the FIR filter,
+ * and the error signal approaches zero.
+ * \par
+ * The adaptive filter converges properly even if the input signal has a large dynamic
+ * range (i.e., varies from small to large values). The coefficients of the adaptive filter
+ * are initially zero, and then converge over 1536 samples. The internal function test_signal_converge()
+ * implements the stopping condition. The function checks if all of the values of the error signal have a
+ * magnitude below a threshold DELTA.
+ *
+ * \par Block Diagram:
+ * \par
+ * \image html SignalFlow.gif
+ *
+ *
+ * \par Variables Description:
+ * \par
+ * \li \c testInput_f32 points to the input data
+ * \li \c firStateF32 points to FIR state buffer
+ * \li \c lmsStateF32 points to Normalised Least mean square FIR filter state buffer
+ * \li \c FIRCoeff_f32 points to coefficient buffer
+ * \li \c lmsNormCoeff_f32 points to Normalised Least mean square FIR filter coefficient buffer
+ * \li \c wire1, wir2, wire3 temporary buffers
+ * \li \c errOutput, err_signal temporary error buffers
+ *
+ * \par CMSIS DSP Software Library Functions Used:
+ * \par
+ * - arm_lms_norm_init_f32()
+ * - arm_fir_init_f32()
+ * - arm_fir_f32()
+ * - arm_lms_norm_f32()
+ * - arm_scale_f32()
+ * - arm_abs_f32()
+ * - arm_sub_f32()
+ * - arm_min_f32()
+ * - arm_copy_f32()
+ *
+ * <b> Refer </b>
+ * \link arm_signal_converge_example_f32.c \endlink
+ *
+ */
+
+
+/** \example arm_signal_converge_example_f32.c
+ */
+
+#include "arm_math.h"
+#include "math_helper.h"
+
+/* ----------------------------------------------------------------------
+** Global defines for the simulation
+* ------------------------------------------------------------------- */
+
+#define TEST_LENGTH_SAMPLES 1536
+#define NUMTAPS 32
+#define BLOCKSIZE 32
+#define DELTA_ERROR 0.000001f
+#define DELTA_COEFF 0.0001f
+#define MU 0.5f
+
+#define NUMFRAMES (TEST_LENGTH_SAMPLES / BLOCKSIZE)
+
+/* ----------------------------------------------------------------------
+* Declare FIR state buffers and structure
+* ------------------------------------------------------------------- */
+
+float32_t firStateF32[NUMTAPS + BLOCKSIZE];
+arm_fir_instance_f32 LPF_instance;
+
+/* ----------------------------------------------------------------------
+* Declare LMSNorm state buffers and structure
+* ------------------------------------------------------------------- */
+
+float32_t lmsStateF32[NUMTAPS + BLOCKSIZE];
+float32_t errOutput[TEST_LENGTH_SAMPLES];
+arm_lms_norm_instance_f32 lmsNorm_instance;
+
+
+/* ----------------------------------------------------------------------
+* Function Declarations for Signal Convergence Example
+* ------------------------------------------------------------------- */
+
+arm_status test_signal_converge_example( void );
+
+
+/* ----------------------------------------------------------------------
+* Internal functions
+* ------------------------------------------------------------------- */
+arm_status test_signal_converge(float32_t* err_signal,
+ uint32_t blockSize);
+
+void getinput(float32_t* input,
+ uint32_t fr_cnt,
+ uint32_t blockSize);
+
+/* ----------------------------------------------------------------------
+* External Declarations for FIR F32 module Test
+* ------------------------------------------------------------------- */
+extern float32_t testInput_f32[TEST_LENGTH_SAMPLES];
+extern float32_t lmsNormCoeff_f32[32];
+extern const float32_t FIRCoeff_f32[32];
+extern arm_lms_norm_instance_f32 lmsNorm_instance;
+
+/* ----------------------------------------------------------------------
+* Declare I/O buffers
+* ------------------------------------------------------------------- */
+
+float32_t wire1[BLOCKSIZE];
+float32_t wire2[BLOCKSIZE];
+float32_t wire3[BLOCKSIZE];
+float32_t err_signal[BLOCKSIZE];
+
+/* ----------------------------------------------------------------------
+* Signal converge test
+* ------------------------------------------------------------------- */
+
+int32_t main(void)
+{
+ uint32_t i;
+ arm_status status;
+ uint32_t index;
+ float32_t minValue;
+
+ /* Initialize the LMSNorm data structure */
+ arm_lms_norm_init_f32(&lmsNorm_instance, NUMTAPS, lmsNormCoeff_f32, lmsStateF32, MU, BLOCKSIZE);
+
+ /* Initialize the FIR data structure */
+ arm_fir_init_f32(&LPF_instance, NUMTAPS, (float32_t *)FIRCoeff_f32, firStateF32, BLOCKSIZE);
+
+ /* ----------------------------------------------------------------------
+ * Loop over the frames of data and execute each of the processing
+ * functions in the system.
+ * ------------------------------------------------------------------- */
+
+ for(i=0; i < NUMFRAMES; i++)
+ {
+ /* Read the input data - uniformly distributed random noise - into wire1 */
+ arm_copy_f32(testInput_f32 + (i * BLOCKSIZE), wire1, BLOCKSIZE);
+
+ /* Execute the FIR processing function. Input wire1 and output wire2 */
+ arm_fir_f32(&LPF_instance, wire1, wire2, BLOCKSIZE);
+
+ /* Execute the LMS Norm processing function*/
+
+ arm_lms_norm_f32(&lmsNorm_instance, /* LMSNorm instance */
+ wire1, /* Input signal */
+ wire2, /* Reference Signal */
+ wire3, /* Converged Signal */
+ err_signal, /* Error Signal, this will become small as the signal converges */
+ BLOCKSIZE); /* BlockSize */
+
+ /* apply overall gain */
+ arm_scale_f32(wire3, 5, wire3, BLOCKSIZE); /* in-place buffer */
+ }
+
+ status = ARM_MATH_SUCCESS;
+
+ /* -------------------------------------------------------------------------------
+ * Test whether the error signal has reached towards 0.
+ * ----------------------------------------------------------------------------- */
+
+ arm_abs_f32(err_signal, err_signal, BLOCKSIZE);
+ arm_min_f32(err_signal, BLOCKSIZE, &minValue, &index);
+
+ if (minValue > DELTA_ERROR)
+ {
+ status = ARM_MATH_TEST_FAILURE;
+ }
+
+ /* ----------------------------------------------------------------------
+ * Test whether the filter coefficients have converged.
+ * ------------------------------------------------------------------- */
+
+ arm_sub_f32((float32_t *)FIRCoeff_f32, lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS);
+
+ arm_abs_f32(lmsNormCoeff_f32, lmsNormCoeff_f32, NUMTAPS);
+ arm_min_f32(lmsNormCoeff_f32, NUMTAPS, &minValue, &index);
+
+ if (minValue > DELTA_COEFF)
+ {
+ status = ARM_MATH_TEST_FAILURE;
+ }
+
+ /* ----------------------------------------------------------------------
+ * Loop here if the signals did not pass the convergence check.
+ * This denotes a test failure
+ * ------------------------------------------------------------------- */
+
+ if ( status != ARM_MATH_SUCCESS)
+ {
+ while (1);
+ }
+
+ while (1); /* main function does not return */
+}
+
+ /** \endlink */